Enter a problem...
Calculus Examples
f(x)=112x4+3x3+40x2f(x)=112x4+3x3+40x2
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of 112x4+3x3+40x2112x4+3x3+40x2 with respect to xx is ddx[112x4]+ddx[3x3]+ddx[40x2]ddx[112x4]+ddx[3x3]+ddx[40x2].
ddx[112x4]+ddx[3x3]+ddx[40x2]
Step 1.1.2
Evaluate ddx[112x4].
Step 1.1.2.1
Since 112 is constant with respect to x, the derivative of 112x4 with respect to x is 112ddx[x4].
112ddx[x4]+ddx[3x3]+ddx[40x2]
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
112(4x3)+ddx[3x3]+ddx[40x2]
Step 1.1.2.3
Combine 4 and 112.
412x3+ddx[3x3]+ddx[40x2]
Step 1.1.2.4
Combine 412 and x3.
4x312+ddx[3x3]+ddx[40x2]
Step 1.1.2.5
Cancel the common factor of 4 and 12.
Step 1.1.2.5.1
Factor 4 out of 4x3.
4(x3)12+ddx[3x3]+ddx[40x2]
Step 1.1.2.5.2
Cancel the common factors.
Step 1.1.2.5.2.1
Factor 4 out of 12.
4x34⋅3+ddx[3x3]+ddx[40x2]
Step 1.1.2.5.2.2
Cancel the common factor.
4x34⋅3+ddx[3x3]+ddx[40x2]
Step 1.1.2.5.2.3
Rewrite the expression.
x33+ddx[3x3]+ddx[40x2]
x33+ddx[3x3]+ddx[40x2]
x33+ddx[3x3]+ddx[40x2]
x33+ddx[3x3]+ddx[40x2]
Step 1.1.3
Evaluate ddx[3x3].
Step 1.1.3.1
Since 3 is constant with respect to x, the derivative of 3x3 with respect to x is 3ddx[x3].
x33+3ddx[x3]+ddx[40x2]
Step 1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
x33+3(3x2)+ddx[40x2]
Step 1.1.3.3
Multiply 3 by 3.
x33+9x2+ddx[40x2]
x33+9x2+ddx[40x2]
Step 1.1.4
Evaluate ddx[40x2].
Step 1.1.4.1
Since 40 is constant with respect to x, the derivative of 40x2 with respect to x is 40ddx[x2].
x33+9x2+40ddx[x2]
Step 1.1.4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x33+9x2+40(2x)
Step 1.1.4.3
Multiply 2 by 40.
f′(x)=x33+9x2+80x
f′(x)=x33+9x2+80x
f′(x)=x33+9x2+80x
Step 1.2
Find the second derivative.
Step 1.2.1
By the Sum Rule, the derivative of x33+9x2+80x with respect to x is ddx[x33]+ddx[9x2]+ddx[80x].
ddx[x33]+ddx[9x2]+ddx[80x]
Step 1.2.2
Evaluate ddx[x33].
Step 1.2.2.1
Since 13 is constant with respect to x, the derivative of x33 with respect to x is 13ddx[x3].
13ddx[x3]+ddx[9x2]+ddx[80x]
Step 1.2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
13(3x2)+ddx[9x2]+ddx[80x]
Step 1.2.2.3
Combine 3 and 13.
33x2+ddx[9x2]+ddx[80x]
Step 1.2.2.4
Combine 33 and x2.
3x23+ddx[9x2]+ddx[80x]
Step 1.2.2.5
Cancel the common factor of 3.
Step 1.2.2.5.1
Cancel the common factor.
3x23+ddx[9x2]+ddx[80x]
Step 1.2.2.5.2
Divide x2 by 1.
x2+ddx[9x2]+ddx[80x]
x2+ddx[9x2]+ddx[80x]
x2+ddx[9x2]+ddx[80x]
Step 1.2.3
Evaluate ddx[9x2].
Step 1.2.3.1
Since 9 is constant with respect to x, the derivative of 9x2 with respect to x is 9ddx[x2].
x2+9ddx[x2]+ddx[80x]
Step 1.2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2+9(2x)+ddx[80x]
Step 1.2.3.3
Multiply 2 by 9.
x2+18x+ddx[80x]
x2+18x+ddx[80x]
Step 1.2.4
Evaluate ddx[80x].
Step 1.2.4.1
Since 80 is constant with respect to x, the derivative of 80x with respect to x is 80ddx[x].
x2+18x+80ddx[x]
Step 1.2.4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x2+18x+80⋅1
Step 1.2.4.3
Multiply 80 by 1.
f′′(x)=x2+18x+80
f′′(x)=x2+18x+80
f′′(x)=x2+18x+80
Step 1.3
The second derivative of f(x) with respect to x is x2+18x+80.
x2+18x+80
x2+18x+80
Step 2
Step 2.1
Set the second derivative equal to 0.
x2+18x+80=0
Step 2.2
Factor x2+18x+80 using the AC method.
Step 2.2.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 80 and whose sum is 18.
8,10
Step 2.2.2
Write the factored form using these integers.
(x+8)(x+10)=0
(x+8)(x+10)=0
Step 2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x+8=0
x+10=0
Step 2.4
Set x+8 equal to 0 and solve for x.
Step 2.4.1
Set x+8 equal to 0.
x+8=0
Step 2.4.2
Subtract 8 from both sides of the equation.
x=-8
x=-8
Step 2.5
Set x+10 equal to 0 and solve for x.
Step 2.5.1
Set x+10 equal to 0.
x+10=0
Step 2.5.2
Subtract 10 from both sides of the equation.
x=-10
x=-10
Step 2.6
The final solution is all the values that make (x+8)(x+10)=0 true.
x=-8,-10
x=-8,-10
Step 3
Step 3.1
Substitute -8 in f(x)=112x4+3x3+40x2 to find the value of y.
Step 3.1.1
Replace the variable x with -8 in the expression.
f(-8)=112⋅(-8)4+3(-8)3+40(-8)2
Step 3.1.2
Simplify the result.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Raise -8 to the power of 4.
f(-8)=112⋅4096+3(-8)3+40(-8)2
Step 3.1.2.1.2
Cancel the common factor of 4.
Step 3.1.2.1.2.1
Factor 4 out of 12.
f(-8)=14(3)⋅4096+3(-8)3+40(-8)2
Step 3.1.2.1.2.2
Factor 4 out of 4096.
f(-8)=14⋅3⋅(4⋅1024)+3(-8)3+40(-8)2
Step 3.1.2.1.2.3
Cancel the common factor.
f(-8)=14⋅3⋅(4⋅1024)+3(-8)3+40(-8)2
Step 3.1.2.1.2.4
Rewrite the expression.
f(-8)=13⋅1024+3(-8)3+40(-8)2
f(-8)=13⋅1024+3(-8)3+40(-8)2
Step 3.1.2.1.3
Combine 13 and 1024.
f(-8)=10243+3(-8)3+40(-8)2
Step 3.1.2.1.4
Raise -8 to the power of 3.
f(-8)=10243+3⋅-512+40(-8)2
Step 3.1.2.1.5
Multiply 3 by -512.
f(-8)=10243-1536+40(-8)2
Step 3.1.2.1.6
Raise -8 to the power of 2.
f(-8)=10243-1536+40⋅64
Step 3.1.2.1.7
Multiply 40 by 64.
f(-8)=10243-1536+2560
f(-8)=10243-1536+2560
Step 3.1.2.2
Find the common denominator.
Step 3.1.2.2.1
Write -1536 as a fraction with denominator 1.
f(-8)=10243+-15361+2560
Step 3.1.2.2.2
Multiply -15361 by 33.
f(-8)=10243+-15361⋅33+2560
Step 3.1.2.2.3
Multiply -15361 by 33.
f(-8)=10243+-1536⋅33+2560
Step 3.1.2.2.4
Write 2560 as a fraction with denominator 1.
f(-8)=10243+-1536⋅33+25601
Step 3.1.2.2.5
Multiply 25601 by 33.
f(-8)=10243+-1536⋅33+25601⋅33
Step 3.1.2.2.6
Multiply 25601 by 33.
f(-8)=10243+-1536⋅33+2560⋅33
f(-8)=10243+-1536⋅33+2560⋅33
Step 3.1.2.3
Combine the numerators over the common denominator.
f(-8)=1024-1536⋅3+2560⋅33
Step 3.1.2.4
Simplify each term.
Step 3.1.2.4.1
Multiply -1536 by 3.
f(-8)=1024-4608+2560⋅33
Step 3.1.2.4.2
Multiply 2560 by 3.
f(-8)=1024-4608+76803
f(-8)=1024-4608+76803
Step 3.1.2.5
Simplify by adding and subtracting.
Step 3.1.2.5.1
Subtract 4608 from 1024.
f(-8)=-3584+76803
Step 3.1.2.5.2
Add -3584 and 7680.
f(-8)=40963
f(-8)=40963
Step 3.1.2.6
The final answer is 40963.
40963
40963
40963
Step 3.2
The point found by substituting -8 in f(x)=112x4+3x3+40x2 is (-8,40963). This point can be an inflection point.
(-8,40963)
Step 3.3
Substitute -10 in f(x)=112x4+3x3+40x2 to find the value of y.
Step 3.3.1
Replace the variable x with -10 in the expression.
f(-10)=112⋅(-10)4+3(-10)3+40(-10)2
Step 3.3.2
Simplify the result.
Step 3.3.2.1
Simplify each term.
Step 3.3.2.1.1
Raise -10 to the power of 4.
f(-10)=112⋅10000+3(-10)3+40(-10)2
Step 3.3.2.1.2
Cancel the common factor of 4.
Step 3.3.2.1.2.1
Factor 4 out of 12.
f(-10)=14(3)⋅10000+3(-10)3+40(-10)2
Step 3.3.2.1.2.2
Factor 4 out of 10000.
f(-10)=14⋅3⋅(4⋅2500)+3(-10)3+40(-10)2
Step 3.3.2.1.2.3
Cancel the common factor.
f(-10)=14⋅3⋅(4⋅2500)+3(-10)3+40(-10)2
Step 3.3.2.1.2.4
Rewrite the expression.
f(-10)=13⋅2500+3(-10)3+40(-10)2
f(-10)=13⋅2500+3(-10)3+40(-10)2
Step 3.3.2.1.3
Combine 13 and 2500.
f(-10)=25003+3(-10)3+40(-10)2
Step 3.3.2.1.4
Raise -10 to the power of 3.
f(-10)=25003+3⋅-1000+40(-10)2
Step 3.3.2.1.5
Multiply 3 by -1000.
f(-10)=25003-3000+40(-10)2
Step 3.3.2.1.6
Raise -10 to the power of 2.
f(-10)=25003-3000+40⋅100
Step 3.3.2.1.7
Multiply 40 by 100.
f(-10)=25003-3000+4000
f(-10)=25003-3000+4000
Step 3.3.2.2
Find the common denominator.
Step 3.3.2.2.1
Write -3000 as a fraction with denominator 1.
f(-10)=25003+-30001+4000
Step 3.3.2.2.2
Multiply -30001 by 33.
f(-10)=25003+-30001⋅33+4000
Step 3.3.2.2.3
Multiply -30001 by 33.
f(-10)=25003+-3000⋅33+4000
Step 3.3.2.2.4
Write 4000 as a fraction with denominator 1.
f(-10)=25003+-3000⋅33+40001
Step 3.3.2.2.5
Multiply 40001 by 33.
f(-10)=25003+-3000⋅33+40001⋅33
Step 3.3.2.2.6
Multiply 40001 by 33.
f(-10)=25003+-3000⋅33+4000⋅33
f(-10)=25003+-3000⋅33+4000⋅33
Step 3.3.2.3
Combine the numerators over the common denominator.
f(-10)=2500-3000⋅3+4000⋅33
Step 3.3.2.4
Simplify each term.
Step 3.3.2.4.1
Multiply -3000 by 3.
f(-10)=2500-9000+4000⋅33
Step 3.3.2.4.2
Multiply 4000 by 3.
f(-10)=2500-9000+120003
f(-10)=2500-9000+120003
Step 3.3.2.5
Simplify by adding and subtracting.
Step 3.3.2.5.1
Subtract 9000 from 2500.
f(-10)=-6500+120003
Step 3.3.2.5.2
Add -6500 and 12000.
f(-10)=55003
f(-10)=55003
Step 3.3.2.6
The final answer is 55003.
55003
55003
55003
Step 3.4
The point found by substituting -10 in f(x)=112x4+3x3+40x2 is (-10,55003). This point can be an inflection point.
(-10,55003)
Step 3.5
Determine the points that could be inflection points.
(-8,40963),(-10,55003)
(-8,40963),(-10,55003)
Step 4
Split (-∞,∞) into intervals around the points that could potentially be inflection points.
(-∞,-10)∪(-10,-8)∪(-8,∞)
Step 5
Step 5.1
Replace the variable x with -10.1 in the expression.
f′′(-10.1)=(-10.1)2+18(-10.1)+80
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Raise -10.1 to the power of 2.
f′′(-10.1)=102.01+18(-10.1)+80
Step 5.2.1.2
Multiply 18 by -10.1.
f′′(-10.1)=102.01-181.8+80
f′′(-10.1)=102.01-181.8+80
Step 5.2.2
Simplify by adding and subtracting.
Step 5.2.2.1
Subtract 181.8 from 102.01.
f′′(-10.1)=-79.79+80
Step 5.2.2.2
Add -79.79 and 80.
f′′(-10.1)=0.21
f′′(-10.1)=0.21
Step 5.2.3
The final answer is 0.21.
0.21
0.21
Step 5.3
At -10.1, the second derivative is 0.21. Since this is positive, the second derivative is increasing on the interval (-∞,-10).
Increasing on (-∞,-10) since f′′(x)>0
Increasing on (-∞,-10) since f′′(x)>0
Step 6
Step 6.1
Replace the variable x with -9 in the expression.
f′′(-9)=(-9)2+18(-9)+80
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Raise -9 to the power of 2.
f′′(-9)=81+18(-9)+80
Step 6.2.1.2
Multiply 18 by -9.
f′′(-9)=81-162+80
f′′(-9)=81-162+80
Step 6.2.2
Simplify by adding and subtracting.
Step 6.2.2.1
Subtract 162 from 81.
f′′(-9)=-81+80
Step 6.2.2.2
Add -81 and 80.
f′′(-9)=-1
f′′(-9)=-1
Step 6.2.3
The final answer is -1.
-1
-1
Step 6.3
At -9, the second derivative is -1. Since this is negative, the second derivative is decreasing on the interval (-10,-8)
Decreasing on (-10,-8) since f′′(x)<0
Decreasing on (-10,-8) since f′′(x)<0
Step 7
Step 7.1
Replace the variable x with -7.9 in the expression.
f′′(-7.9)=(-7.9)2+18(-7.9)+80
Step 7.2
Simplify the result.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Raise -7.9 to the power of 2.
f′′(-7.9)=62.41+18(-7.9)+80
Step 7.2.1.2
Multiply 18 by -7.9.
f′′(-7.9)=62.41-142.2+80
f′′(-7.9)=62.41-142.2+80
Step 7.2.2
Simplify by adding and subtracting.
Step 7.2.2.1
Subtract 142.2 from 62.41.
f′′(-7.9)=-79.79+80
Step 7.2.2.2
Add -79.79 and 80.
f′′(-7.9)=0.21
f′′(-7.9)=0.21
Step 7.2.3
The final answer is 0.21.
0.21
0.21
Step 7.3
At -7.9, the second derivative is 0.21. Since this is positive, the second derivative is increasing on the interval (-8,∞).
Increasing on (-8,∞) since f′′(x)>0
Increasing on (-8,∞) since f′′(x)>0
Step 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are (-10,55003),(-8,40963).
(-10,55003),(-8,40963)
Step 9