Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
Differentiate using the chain rule, which states that is where and .
Step 1.1.2.1
To apply the Chain Rule, set as .
Step 1.1.2.2
The derivative of with respect to is .
Step 1.1.2.3
Replace all occurrences of with .
Step 1.1.3
Differentiate.
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Multiply by .
Step 1.1.3.3
Differentiate using the Power Rule which states that is where .
Step 1.1.3.4
Multiply by .
Step 1.2
Rewrite the problem using and .
Step 2
Step 2.1
Move the negative in front of the fraction.
Step 2.2
Multiply by .
Step 2.3
Move to the left of .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Step 5.1
Move out of the denominator by raising it to the power.
Step 5.2
Multiply the exponents in .
Step 5.2.1
Apply the power rule and multiply exponents, .
Step 5.2.2
Multiply by .
Step 6
By the Power Rule, the integral of with respect to is .
Step 7
Step 7.1
Rewrite as .
Step 7.2
Simplify.
Step 7.2.1
Multiply by .
Step 7.2.2
Multiply by .
Step 7.2.3
Multiply by .
Step 8
Replace all occurrences of with .
Step 9
Step 9.1
Separate fractions.
Step 9.2
Convert from to .
Step 9.3
Combine and .
Step 9.4
Reorder terms.