Calculus Examples

Find the Antiderivative sin(2x)+3cos(3x)
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Split the single integral into multiple integrals.
Step 5
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 5.1
Let . Find .
Tap for more steps...
Step 5.1.1
Differentiate .
Step 5.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.3
Differentiate using the Power Rule which states that is where .
Step 5.1.4
Multiply by .
Step 5.2
Rewrite the problem using and .
Step 6
Combine and .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
The integral of with respect to is .
Step 9
Since is constant with respect to , move out of the integral.
Step 10
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 10.1
Let . Find .
Tap for more steps...
Step 10.1.1
Differentiate .
Step 10.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 10.1.3
Differentiate using the Power Rule which states that is where .
Step 10.1.4
Multiply by .
Step 10.2
Rewrite the problem using and .
Step 11
Combine and .
Step 12
Since is constant with respect to , move out of the integral.
Step 13
Simplify.
Tap for more steps...
Step 13.1
Combine and .
Step 13.2
Cancel the common factor of .
Tap for more steps...
Step 13.2.1
Cancel the common factor.
Step 13.2.2
Rewrite the expression.
Step 13.3
Multiply by .
Step 14
The integral of with respect to is .
Step 15
Simplify.
Step 16
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 16.1
Replace all occurrences of with .
Step 16.2
Replace all occurrences of with .
Step 17
Reorder terms.
Step 18
The answer is the antiderivative of the function .