Enter a problem...
Calculus Examples
∫x30f(t)dt=x4∫x30f(t)dt=x4
Step 1
Take the derivative of ∫x30ftdt∫x30ftdt with respect to xx using Fundamental Theorem of Calculus and the chain rule.
ddx[x3](fx3)ddx[x3](fx3)
Step 2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=3n=3.
3x2(fx3)3x2(fx3)
Step 3
Use the power rule aman=am+naman=am+n to combine exponents.
3(fx2+3)3(fx2+3)
Step 4
Add 22 and 33.
3(fx5)3(fx5)
Step 5
Reorder the factors of 3fx53fx5.
3x5f3x5f