Enter a problem...
Calculus Examples
x2-1xx2−1x
Step 1
Step 1.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]−f(x)ddx[g(x)]g(x)2 where f(x)=x2-1f(x)=x2−1 and g(x)=xg(x)=x.
xddx[x2-1]-(x2-1)ddx[x]x2xddx[x2−1]−(x2−1)ddx[x]x2
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of x2-1x2−1 with respect to xx is ddx[x2]+ddx[-1]ddx[x2]+ddx[−1].
x(ddx[x2]+ddx[-1])-(x2-1)ddx[x]x2x(ddx[x2]+ddx[−1])−(x2−1)ddx[x]x2
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
x(2x+ddx[-1])-(x2-1)ddx[x]x2x(2x+ddx[−1])−(x2−1)ddx[x]x2
Step 1.2.3
Since -1−1 is constant with respect to xx, the derivative of -1−1 with respect to xx is 00.
x(2x+0)-(x2-1)ddx[x]x2x(2x+0)−(x2−1)ddx[x]x2
Step 1.2.4
Add 2x2x and 00.
x(2x)-(x2-1)ddx[x]x2x(2x)−(x2−1)ddx[x]x2
x(2x)-(x2-1)ddx[x]x2x(2x)−(x2−1)ddx[x]x2
Step 1.3
Raise xx to the power of 11.
2(x1x)-(x2-1)ddx[x]x22(x1x)−(x2−1)ddx[x]x2
Step 1.4
Raise xx to the power of 11.
2(x1x1)-(x2-1)ddx[x]x22(x1x1)−(x2−1)ddx[x]x2
Step 1.5
Use the power rule aman=am+naman=am+n to combine exponents.
2x1+1-(x2-1)ddx[x]x22x1+1−(x2−1)ddx[x]x2
Step 1.6
Add 11 and 11.
2x2-(x2-1)ddx[x]x22x2−(x2−1)ddx[x]x2
Step 1.7
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
2x2-(x2-1)⋅1x22x2−(x2−1)⋅1x2
Step 1.8
Multiply -1−1 by 11.
2x2-(x2-1)x22x2−(x2−1)x2
Step 1.9
Simplify.
Step 1.9.1
Apply the distributive property.
2x2-x2--1x22x2−x2−−1x2
Step 1.9.2
Simplify the numerator.
Step 1.9.2.1
Multiply -1−1 by -1−1.
2x2-x2+1x22x2−x2+1x2
Step 1.9.2.2
Subtract x2x2 from 2x22x2.
f′(x)=x2+1x2
f′(x)=x2+1x2
f′(x)=x2+1x2
f′(x)=x2+1x2
Step 2
Step 2.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=x2+1 and g(x)=x2.
x2ddx[x2+1]-(x2+1)ddx[x2](x2)2
Step 2.2
Differentiate.
Step 2.2.1
Multiply the exponents in (x2)2.
Step 2.2.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x2ddx[x2+1]-(x2+1)ddx[x2]x2⋅2
Step 2.2.1.2
Multiply 2 by 2.
x2ddx[x2+1]-(x2+1)ddx[x2]x4
x2ddx[x2+1]-(x2+1)ddx[x2]x4
Step 2.2.2
By the Sum Rule, the derivative of x2+1 with respect to x is ddx[x2]+ddx[1].
x2(ddx[x2]+ddx[1])-(x2+1)ddx[x2]x4
Step 2.2.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2(2x+ddx[1])-(x2+1)ddx[x2]x4
Step 2.2.4
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
x2(2x+0)-(x2+1)ddx[x2]x4
Step 2.2.5
Add 2x and 0.
x2(2x)-(x2+1)ddx[x2]x4
x2(2x)-(x2+1)ddx[x2]x4
Step 2.3
Multiply x2 by x by adding the exponents.
Step 2.3.1
Move x.
x⋅x2⋅2-(x2+1)ddx[x2]x4
Step 2.3.2
Multiply x by x2.
Step 2.3.2.1
Raise x to the power of 1.
x1x2⋅2-(x2+1)ddx[x2]x4
Step 2.3.2.2
Use the power rule aman=am+n to combine exponents.
x1+2⋅2-(x2+1)ddx[x2]x4
x1+2⋅2-(x2+1)ddx[x2]x4
Step 2.3.3
Add 1 and 2.
x3⋅2-(x2+1)ddx[x2]x4
x3⋅2-(x2+1)ddx[x2]x4
Step 2.4
Move 2 to the left of x3.
2⋅x3-(x2+1)ddx[x2]x4
Step 2.5
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
2x3-(x2+1)(2x)x4
Step 2.6
Multiply 2 by -1.
2x3-2(x2+1)xx4
Step 2.7
Simplify.
Step 2.7.1
Apply the distributive property.
2x3+(-2x2-2⋅1)xx4
Step 2.7.2
Apply the distributive property.
2x3-2x2x-2⋅1xx4
Step 2.7.3
Simplify the numerator.
Step 2.7.3.1
Simplify each term.
Step 2.7.3.1.1
Multiply x2 by x by adding the exponents.
Step 2.7.3.1.1.1
Move x.
2x3-2(x⋅x2)-2⋅1xx4
Step 2.7.3.1.1.2
Multiply x by x2.
Step 2.7.3.1.1.2.1
Raise x to the power of 1.
2x3-2(x1x2)-2⋅1xx4
Step 2.7.3.1.1.2.2
Use the power rule aman=am+n to combine exponents.
2x3-2x1+2-2⋅1xx4
2x3-2x1+2-2⋅1xx4
Step 2.7.3.1.1.3
Add 1 and 2.
2x3-2x3-2⋅1xx4
2x3-2x3-2⋅1xx4
Step 2.7.3.1.2
Multiply -2 by 1.
2x3-2x3-2xx4
2x3-2x3-2xx4
Step 2.7.3.2
Subtract 2x3 from 2x3.
0-2xx4
Step 2.7.3.3
Subtract 2x from 0.
-2xx4
-2xx4
Step 2.7.4
Combine terms.
Step 2.7.4.1
Cancel the common factor of x and x4.
Step 2.7.4.1.1
Factor x out of -2x.
x⋅-2x4
Step 2.7.4.1.2
Cancel the common factors.
Step 2.7.4.1.2.1
Factor x out of x4.
x⋅-2x⋅x3
Step 2.7.4.1.2.2
Cancel the common factor.
x⋅-2x⋅x3
Step 2.7.4.1.2.3
Rewrite the expression.
-2x3
-2x3
-2x3
Step 2.7.4.2
Move the negative in front of the fraction.
f′′(x)=-2x3
f′′(x)=-2x3
f′′(x)=-2x3
f′′(x)=-2x3