Calculus Examples

Evaluate the Integral integral from 0 to 1 of x^2*2^x with respect to x
10x22xdx
Step 1
Integrate by parts using the formula udv=uv-vdu, where u=x2 and dv=2x.
x2(1ln(2)2x)]10-101ln(2)2x(2x)dx
Step 2
Simplify.
Tap for more steps...
Step 2.1
Combine 1ln(2) and 2x.
x22xln(2)]10-101ln(2)2x(2x)dx
Step 2.2
Combine x2 and 2xln(2).
x22xln(2)]10-101ln(2)2x(2x)dx
x22xln(2)]10-101ln(2)2x(2x)dx
Step 3
Since 1ln(2)2 is constant with respect to x, move 1ln(2)2 out of the integral.
x22xln(2)]10-(1ln(2)2102x-1(2x)dx)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Combine 1ln(2) and 2.
x22xln(2)]10-(2ln(2)102x-1(2x)dx)
Step 4.2
Multiply 2x-1 by 2 by adding the exponents.
Tap for more steps...
Step 4.2.1
Move 2.
x22xln(2)]10-(2ln(2)1022x-1xdx)
Step 4.2.2
Multiply 2 by 2x-1.
Tap for more steps...
Step 4.2.2.1
Raise 2 to the power of 1.
x22xln(2)]10-(2ln(2)10212x-1xdx)
Step 4.2.2.2
Use the power rule aman=am+n to combine exponents.
x22xln(2)]10-(2ln(2)1021+x-1xdx)
x22xln(2)]10-(2ln(2)1021+x-1xdx)
Step 4.2.3
Combine the opposite terms in 1+x-1.
Tap for more steps...
Step 4.2.3.1
Subtract 1 from 1.
x22xln(2)]10-(2ln(2)102x+0xdx)
Step 4.2.3.2
Add x and 0.
x22xln(2)]10-(2ln(2)102xxdx)
x22xln(2)]10-(2ln(2)102xxdx)
x22xln(2)]10-2ln(2)102xxdx
x22xln(2)]10-2ln(2)102xxdx
Step 5
Integrate by parts using the formula udv=uv-vdu, where u=x and dv=2x.
x22xln(2)]10-2ln(2)(x(1ln(2)2x)]10-101ln(2)2xdx)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Combine 1ln(2) and 2x.
x22xln(2)]10-2ln(2)(x2xln(2)]10-101ln(2)2xdx)
Step 6.2
Combine x and 2xln(2).
x22xln(2)]10-2ln(2)(x2xln(2)]10-101ln(2)2xdx)
Step 6.3
Combine 1ln(2) and 2x.
x22xln(2)]10-2ln(2)(x2xln(2)]10-102xln(2)dx)
x22xln(2)]10-2ln(2)(x2xln(2)]10-102xln(2)dx)
Step 7
Since 1ln(2) is constant with respect to x, move 1ln(2) out of the integral.
x22xln(2)]10-2ln(2)(x2xln(2)]10-(1ln(2)102xdx))
Step 8
The integral of 2x with respect to x is 2xln(2).
x22xln(2)]10-2ln(2)(x2xln(2)]10-1ln(2)2xln(2)]10)
Step 9
Simplify the answer.
Tap for more steps...
Step 9.1
Combine 2xln(2)]10 and 1ln(2).
x22xln(2)]10-2ln(2)(x2xln(2)]10-2xln(2)]10ln(2))
Step 9.2
Substitute and simplify.
Tap for more steps...
Step 9.2.1
Evaluate x22xln(2) at 1 and at 0.
(1221ln(2))-0220ln(2)-2ln(2)(x2xln(2)]10-2xln(2)]10ln(2))
Step 9.2.2
Evaluate x2xln(2) at 1 and at 0.
(1221ln(2))-0220ln(2)-2ln(2)((121ln(2))-020ln(2)-2xln(2)]10ln(2))
Step 9.2.3
Evaluate 2xln(2) at 1 and at 0.
(1221ln(2))-0220ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4
Simplify.
Tap for more steps...
Step 9.2.4.1
One to any power is one.
121ln(2)-0220ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.2
Evaluate the exponent.
12ln(2)-0220ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.3
Multiply 2 by 1.
2ln(2)-0220ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.4
Raising 0 to any positive power yields 0.
2ln(2)-020ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.5
Anything raised to 0 is 1.
2ln(2)-01ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.6
Multiply 0 by 1.
2ln(2)-0ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.7
Combine the numerators over the common denominator.
2+0ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.8
Add 2 and 0.
2ln(2)-2ln(2)((121ln(2))-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.9
Evaluate the exponent.
2ln(2)-2ln(2)(12ln(2)-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.10
Multiply 2 by 1.
2ln(2)-2ln(2)(2ln(2)-020ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.11
Anything raised to 0 is 1.
2ln(2)-2ln(2)(2ln(2)-01ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.12
Multiply 0 by 1.
2ln(2)-2ln(2)(2ln(2)-0ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.13
Combine the numerators over the common denominator.
2ln(2)-2ln(2)(2+0ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.14
Add 2 and 0.
2ln(2)-2ln(2)(2ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.15
Evaluate the exponent.
2ln(2)-2ln(2)(2ln(2)-2ln(2)-20ln(2)ln(2))
Step 9.2.4.16
Anything raised to 0 is 1.
2ln(2)-2ln(2)(2ln(2)-2ln(2)-1ln(2)ln(2))
Step 9.2.4.17
Combine the numerators over the common denominator.
2ln(2)-2ln(2)(2ln(2)-2-1ln(2)ln(2))
Step 9.2.4.18
Subtract 1 from 2.
2ln(2)-2ln(2)(2ln(2)-1ln(2)ln(2))
Step 9.2.4.19
Rewrite 1ln(2)ln(2) as a product.
2ln(2)-2ln(2)(2ln(2)-(1ln(2)1ln(2)))
Step 9.2.4.20
Multiply 1ln(2) by 1ln(2).
2ln(2)-2ln(2)(2ln(2)-1ln(2)ln(2))
Step 9.2.4.21
Raise ln(2) to the power of 1.
2ln(2)-2ln(2)(2ln(2)-1ln1(2)ln(2))
Step 9.2.4.22
Raise ln(2) to the power of 1.
2ln(2)-2ln(2)(2ln(2)-1ln1(2)ln1(2))
Step 9.2.4.23
Use the power rule aman=am+n to combine exponents.
2ln(2)-2ln(2)(2ln(2)-1ln(2)1+1)
Step 9.2.4.24
Add 1 and 1.
2ln(2)-2ln(2)(2ln(2)-1ln2(2))
Step 9.2.4.25
To write -2ln(2)(2ln(2)-1ln2(2)) as a fraction with a common denominator, multiply by ln(2)ln(2).
2ln(2)-2ln(2)(2ln(2)-1ln2(2))ln(2)ln(2)
Step 9.2.4.26
Combine -2ln(2)(2ln(2)-1ln2(2)) and ln(2)ln(2).
2ln(2)+-2ln(2)(2ln(2)-1ln2(2))ln(2)ln(2)
Step 9.2.4.27
Combine the numerators over the common denominator.
2-2ln(2)(2ln(2)-1ln2(2))ln(2)ln(2)
Step 9.2.4.28
Combine ln(2) and 2ln(2).
2-ln(2)2ln(2)(2ln(2)-1ln2(2))ln(2)
Step 9.2.4.29
Move 2 to the left of ln(2).
2-2ln(2)ln(2)(2ln(2)-1ln2(2))ln(2)
Step 9.2.4.30
Cancel the common factor of ln(2).
Tap for more steps...
Step 9.2.4.30.1
Cancel the common factor.
2-2ln(2)ln(2)(2ln(2)-1ln2(2))ln(2)
Step 9.2.4.30.2
Divide 2 by 1.
2-12(2ln(2)-1ln2(2))ln(2)
2-12(2ln(2)-1ln2(2))ln(2)
Step 9.2.4.31
Multiply -1 by 2.
2-2(2ln(2)-1ln2(2))ln(2)
2-2(2ln(2)-1ln2(2))ln(2)
2-2(2ln(2)-1ln2(2))ln(2)
2-2(2ln(2)-1ln2(2))ln(2)
Step 10
Simplify.
Tap for more steps...
Step 10.1
Simplify the numerator.
Tap for more steps...
Step 10.1.1
Apply the distributive property.
2-22ln(2)-2(-1ln2(2))ln(2)
Step 10.1.2
Multiply -22ln(2).
Tap for more steps...
Step 10.1.2.1
Combine -2 and 2ln(2).
2+-22ln(2)-2(-1ln2(2))ln(2)
Step 10.1.2.2
Multiply -2 by 2.
2+-4ln(2)-2(-1ln2(2))ln(2)
2+-4ln(2)-2(-1ln2(2))ln(2)
Step 10.1.3
Multiply -2(-1ln2(2)).
Tap for more steps...
Step 10.1.3.1
Multiply -1 by -2.
2+-4ln(2)+21ln2(2)ln(2)
Step 10.1.3.2
Combine 2 and 1ln2(2).
2+-4ln(2)+2ln2(2)ln(2)
2+-4ln(2)+2ln2(2)ln(2)
Step 10.1.4
Move the negative in front of the fraction.
2-4ln(2)+2ln2(2)ln(2)
Step 10.1.5
To write 2 as a fraction with a common denominator, multiply by ln(2)ln(2).
2ln(2)ln(2)-4ln(2)+2ln2(2)ln(2)
Step 10.1.6
Combine the numerators over the common denominator.
2ln(2)-4ln(2)+2ln2(2)ln(2)
Step 10.1.7
To write 2ln(2)-4ln(2) as a fraction with a common denominator, multiply by ln(2)ln(2).
2ln(2)-4ln(2)ln(2)ln(2)+2ln2(2)ln(2)
Step 10.1.8
Write each expression with a common denominator of ln2(2), by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 10.1.8.1
Multiply 2ln(2)-4ln(2) by ln(2)ln(2).
(2ln(2)-4)ln(2)ln(2)ln(2)+2ln2(2)ln(2)
Step 10.1.8.2
Raise ln(2) to the power of 1.
(2ln(2)-4)ln(2)ln1(2)ln(2)+2ln2(2)ln(2)
Step 10.1.8.3
Raise ln(2) to the power of 1.
(2ln(2)-4)ln(2)ln1(2)ln1(2)+2ln2(2)ln(2)
Step 10.1.8.4
Use the power rule aman=am+n to combine exponents.
(2ln(2)-4)ln(2)ln(2)1+1+2ln2(2)ln(2)
Step 10.1.8.5
Add 1 and 1.
(2ln(2)-4)ln(2)ln2(2)+2ln2(2)ln(2)
(2ln(2)-4)ln(2)ln2(2)+2ln2(2)ln(2)
Step 10.1.9
Combine the numerators over the common denominator.
(2ln(2)-4)ln(2)+2ln2(2)ln(2)
Step 10.1.10
Simplify the numerator.
Tap for more steps...
Step 10.1.10.1
Apply the distributive property.
2ln(2)ln(2)-4ln(2)+2ln2(2)ln(2)
Step 10.1.10.2
Multiply 2ln(2)ln(2).
Tap for more steps...
Step 10.1.10.2.1
Raise ln(2) to the power of 1.
2(ln1(2)ln(2))-4ln(2)+2ln2(2)ln(2)
Step 10.1.10.2.2
Raise ln(2) to the power of 1.
2(ln1(2)ln1(2))-4ln(2)+2ln2(2)ln(2)
Step 10.1.10.2.3
Use the power rule aman=am+n to combine exponents.
2ln(2)1+1-4ln(2)+2ln2(2)ln(2)
Step 10.1.10.2.4
Add 1 and 1.
2ln2(2)-4ln(2)+2ln2(2)ln(2)
2ln2(2)-4ln(2)+2ln2(2)ln(2)
2ln2(2)-4ln(2)+2ln2(2)ln(2)
2ln2(2)-4ln(2)+2ln2(2)ln(2)
Step 10.2
Multiply the numerator by the reciprocal of the denominator.
2ln2(2)-4ln(2)+2ln2(2)1ln(2)
Step 10.3
Multiply 2ln2(2)-4ln(2)+2ln2(2)1ln(2).
Tap for more steps...
Step 10.3.1
Multiply 2ln2(2)-4ln(2)+2ln2(2) by 1ln(2).
2ln2(2)-4ln(2)+2ln2(2)ln(2)
Step 10.3.2
Multiply ln2(2) by ln(2) by adding the exponents.
Tap for more steps...
Step 10.3.2.1
Multiply ln2(2) by ln(2).
Tap for more steps...
Step 10.3.2.1.1
Raise ln(2) to the power of 1.
2ln2(2)-4ln(2)+2ln2(2)ln1(2)
Step 10.3.2.1.2
Use the power rule aman=am+n to combine exponents.
2ln2(2)-4ln(2)+2ln(2)2+1
2ln2(2)-4ln(2)+2ln(2)2+1
Step 10.3.2.2
Add 2 and 1.
2ln2(2)-4ln(2)+2ln3(2)
2ln2(2)-4ln(2)+2ln3(2)
2ln2(2)-4ln(2)+2ln3(2)
2ln2(2)-4ln(2)+2ln3(2)
Step 11
The result can be shown in multiple forms.
Exact Form:
2ln2(2)-4ln(2)+2ln3(2)
Decimal Form:
0.56547557
Step 12
 [x2  12  π  xdx ]