Enter a problem...
Calculus Examples
∫10x2⋅2xdx
Step 1
Integrate by parts using the formula ∫udv=uv-∫vdu, where u=x2 and dv=2x.
x2(1ln(2)⋅2x)]10-∫101ln(2)⋅2x(2x)dx
Step 2
Step 2.1
Combine 1ln(2) and 2x.
x22xln(2)]10-∫101ln(2)⋅2x(2x)dx
Step 2.2
Combine x2 and 2xln(2).
x2⋅2xln(2)]10-∫101ln(2)⋅2x(2x)dx
x2⋅2xln(2)]10-∫101ln(2)⋅2x(2x)dx
Step 3
Since 1ln(2)⋅2 is constant with respect to x, move 1ln(2)⋅2 out of the integral.
x2⋅2xln(2)]10-(1ln(2)⋅2∫102x-1(2x)dx)
Step 4
Step 4.1
Combine 1ln(2) and 2.
x2⋅2xln(2)]10-(2ln(2)∫102x-1(2x)dx)
Step 4.2
Multiply 2x-1 by 2 by adding the exponents.
Step 4.2.1
Move 2.
x2⋅2xln(2)]10-(2ln(2)∫102⋅2x-1xdx)
Step 4.2.2
Multiply 2 by 2x-1.
Step 4.2.2.1
Raise 2 to the power of 1.
x2⋅2xln(2)]10-(2ln(2)∫1021⋅2x-1xdx)
Step 4.2.2.2
Use the power rule aman=am+n to combine exponents.
x2⋅2xln(2)]10-(2ln(2)∫1021+x-1xdx)
x2⋅2xln(2)]10-(2ln(2)∫1021+x-1xdx)
Step 4.2.3
Combine the opposite terms in 1+x-1.
Step 4.2.3.1
Subtract 1 from 1.
x2⋅2xln(2)]10-(2ln(2)∫102x+0xdx)
Step 4.2.3.2
Add x and 0.
x2⋅2xln(2)]10-(2ln(2)∫102xxdx)
x2⋅2xln(2)]10-(2ln(2)∫102xxdx)
x2⋅2xln(2)]10-2ln(2)∫102xxdx
x2⋅2xln(2)]10-2ln(2)∫102xxdx
Step 5
Integrate by parts using the formula ∫udv=uv-∫vdu, where u=x and dv=2x.
x2⋅2xln(2)]10-2ln(2)(x(1ln(2)⋅2x)]10-∫101ln(2)⋅2xdx)
Step 6
Step 6.1
Combine 1ln(2) and 2x.
x2⋅2xln(2)]10-2ln(2)(x2xln(2)]10-∫101ln(2)⋅2xdx)
Step 6.2
Combine x and 2xln(2).
x2⋅2xln(2)]10-2ln(2)(x⋅2xln(2)]10-∫101ln(2)⋅2xdx)
Step 6.3
Combine 1ln(2) and 2x.
x2⋅2xln(2)]10-2ln(2)(x⋅2xln(2)]10-∫102xln(2)dx)
x2⋅2xln(2)]10-2ln(2)(x⋅2xln(2)]10-∫102xln(2)dx)
Step 7
Since 1ln(2) is constant with respect to x, move 1ln(2) out of the integral.
x2⋅2xln(2)]10-2ln(2)(x⋅2xln(2)]10-(1ln(2)∫102xdx))
Step 8
The integral of 2x with respect to x is 2xln(2).
x2⋅2xln(2)]10-2ln(2)(x⋅2xln(2)]10-1ln(2)2xln(2)]10)
Step 9
Step 9.1
Combine 2xln(2)]10 and 1ln(2).
x2⋅2xln(2)]10-2ln(2)(x⋅2xln(2)]10-2xln(2)]10ln(2))
Step 9.2
Substitute and simplify.
Step 9.2.1
Evaluate x2⋅2xln(2) at 1 and at 0.
(12⋅21ln(2))-02⋅20ln(2)-2ln(2)(x⋅2xln(2)]10-2xln(2)]10ln(2))
Step 9.2.2
Evaluate x⋅2xln(2) at 1 and at 0.
(12⋅21ln(2))-02⋅20ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-2xln(2)]10ln(2))
Step 9.2.3
Evaluate 2xln(2) at 1 and at 0.
(12⋅21ln(2))-02⋅20ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4
Simplify.
Step 9.2.4.1
One to any power is one.
1⋅21ln(2)-02⋅20ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.2
Evaluate the exponent.
1⋅2ln(2)-02⋅20ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.3
Multiply 2 by 1.
2ln(2)-02⋅20ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.4
Raising 0 to any positive power yields 0.
2ln(2)-0⋅20ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.5
Anything raised to 0 is 1.
2ln(2)-0⋅1ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.6
Multiply 0 by 1.
2ln(2)-0ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.7
Combine the numerators over the common denominator.
2+0ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.8
Add 2 and 0.
2ln(2)-2ln(2)((1⋅21ln(2))-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.9
Evaluate the exponent.
2ln(2)-2ln(2)(1⋅2ln(2)-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.10
Multiply 2 by 1.
2ln(2)-2ln(2)(2ln(2)-0⋅20ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.11
Anything raised to 0 is 1.
2ln(2)-2ln(2)(2ln(2)-0⋅1ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.12
Multiply 0 by 1.
2ln(2)-2ln(2)(2ln(2)-0ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.13
Combine the numerators over the common denominator.
2ln(2)-2ln(2)(2+0ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.14
Add 2 and 0.
2ln(2)-2ln(2)(2ln(2)-(21ln(2))-20ln(2)ln(2))
Step 9.2.4.15
Evaluate the exponent.
2ln(2)-2ln(2)(2ln(2)-2ln(2)-20ln(2)ln(2))
Step 9.2.4.16
Anything raised to 0 is 1.
2ln(2)-2ln(2)(2ln(2)-2ln(2)-1ln(2)ln(2))
Step 9.2.4.17
Combine the numerators over the common denominator.
2ln(2)-2ln(2)(2ln(2)-2-1ln(2)ln(2))
Step 9.2.4.18
Subtract 1 from 2.
2ln(2)-2ln(2)(2ln(2)-1ln(2)ln(2))
Step 9.2.4.19
Rewrite 1ln(2)ln(2) as a product.
2ln(2)-2ln(2)(2ln(2)-(1ln(2)⋅1ln(2)))
Step 9.2.4.20
Multiply 1ln(2) by 1ln(2).
2ln(2)-2ln(2)(2ln(2)-1ln(2)ln(2))
Step 9.2.4.21
Raise ln(2) to the power of 1.
2ln(2)-2ln(2)(2ln(2)-1ln1(2)ln(2))
Step 9.2.4.22
Raise ln(2) to the power of 1.
2ln(2)-2ln(2)(2ln(2)-1ln1(2)ln1(2))
Step 9.2.4.23
Use the power rule aman=am+n to combine exponents.
2ln(2)-2ln(2)(2ln(2)-1ln(2)1+1)
Step 9.2.4.24
Add 1 and 1.
2ln(2)-2ln(2)(2ln(2)-1ln2(2))
Step 9.2.4.25
To write -2ln(2)(2ln(2)-1ln2(2)) as a fraction with a common denominator, multiply by ln(2)ln(2).
2ln(2)-2ln(2)(2ln(2)-1ln2(2))⋅ln(2)ln(2)
Step 9.2.4.26
Combine -2ln(2)(2ln(2)-1ln2(2)) and ln(2)ln(2).
2ln(2)+-2ln(2)(2ln(2)-1ln2(2))ln(2)ln(2)
Step 9.2.4.27
Combine the numerators over the common denominator.
2-2ln(2)(2ln(2)-1ln2(2))ln(2)ln(2)
Step 9.2.4.28
Combine ln(2) and 2ln(2).
2-ln(2)⋅2ln(2)(2ln(2)-1ln2(2))ln(2)
Step 9.2.4.29
Move 2 to the left of ln(2).
2-2⋅ln(2)ln(2)(2ln(2)-1ln2(2))ln(2)
Step 9.2.4.30
Cancel the common factor of ln(2).
Step 9.2.4.30.1
Cancel the common factor.
2-2ln(2)ln(2)(2ln(2)-1ln2(2))ln(2)
Step 9.2.4.30.2
Divide 2 by 1.
2-1⋅2(2ln(2)-1ln2(2))ln(2)
2-1⋅2(2ln(2)-1ln2(2))ln(2)
Step 9.2.4.31
Multiply -1 by 2.
2-2(2ln(2)-1ln2(2))ln(2)
2-2(2ln(2)-1ln2(2))ln(2)
2-2(2ln(2)-1ln2(2))ln(2)
2-2(2ln(2)-1ln2(2))ln(2)
Step 10
Step 10.1
Simplify the numerator.
Step 10.1.1
Apply the distributive property.
2-22ln(2)-2(-1ln2(2))ln(2)
Step 10.1.2
Multiply -22ln(2).
Step 10.1.2.1
Combine -2 and 2ln(2).
2+-2⋅2ln(2)-2(-1ln2(2))ln(2)
Step 10.1.2.2
Multiply -2 by 2.
2+-4ln(2)-2(-1ln2(2))ln(2)
2+-4ln(2)-2(-1ln2(2))ln(2)
Step 10.1.3
Multiply -2(-1ln2(2)).
Step 10.1.3.1
Multiply -1 by -2.
2+-4ln(2)+21ln2(2)ln(2)
Step 10.1.3.2
Combine 2 and 1ln2(2).
2+-4ln(2)+2ln2(2)ln(2)
2+-4ln(2)+2ln2(2)ln(2)
Step 10.1.4
Move the negative in front of the fraction.
2-4ln(2)+2ln2(2)ln(2)
Step 10.1.5
To write 2 as a fraction with a common denominator, multiply by ln(2)ln(2).
2ln(2)ln(2)-4ln(2)+2ln2(2)ln(2)
Step 10.1.6
Combine the numerators over the common denominator.
2ln(2)-4ln(2)+2ln2(2)ln(2)
Step 10.1.7
To write 2ln(2)-4ln(2) as a fraction with a common denominator, multiply by ln(2)ln(2).
2ln(2)-4ln(2)⋅ln(2)ln(2)+2ln2(2)ln(2)
Step 10.1.8
Write each expression with a common denominator of ln2(2), by multiplying each by an appropriate factor of 1.
Step 10.1.8.1
Multiply 2ln(2)-4ln(2) by ln(2)ln(2).
(2ln(2)-4)ln(2)ln(2)ln(2)+2ln2(2)ln(2)
Step 10.1.8.2
Raise ln(2) to the power of 1.
(2ln(2)-4)ln(2)ln1(2)ln(2)+2ln2(2)ln(2)
Step 10.1.8.3
Raise ln(2) to the power of 1.
(2ln(2)-4)ln(2)ln1(2)ln1(2)+2ln2(2)ln(2)
Step 10.1.8.4
Use the power rule aman=am+n to combine exponents.
(2ln(2)-4)ln(2)ln(2)1+1+2ln2(2)ln(2)
Step 10.1.8.5
Add 1 and 1.
(2ln(2)-4)ln(2)ln2(2)+2ln2(2)ln(2)
(2ln(2)-4)ln(2)ln2(2)+2ln2(2)ln(2)
Step 10.1.9
Combine the numerators over the common denominator.
(2ln(2)-4)ln(2)+2ln2(2)ln(2)
Step 10.1.10
Simplify the numerator.
Step 10.1.10.1
Apply the distributive property.
2ln(2)ln(2)-4ln(2)+2ln2(2)ln(2)
Step 10.1.10.2
Multiply 2ln(2)ln(2).
Step 10.1.10.2.1
Raise ln(2) to the power of 1.
2(ln1(2)ln(2))-4ln(2)+2ln2(2)ln(2)
Step 10.1.10.2.2
Raise ln(2) to the power of 1.
2(ln1(2)ln1(2))-4ln(2)+2ln2(2)ln(2)
Step 10.1.10.2.3
Use the power rule aman=am+n to combine exponents.
2ln(2)1+1-4ln(2)+2ln2(2)ln(2)
Step 10.1.10.2.4
Add 1 and 1.
2ln2(2)-4ln(2)+2ln2(2)ln(2)
2ln2(2)-4ln(2)+2ln2(2)ln(2)
2ln2(2)-4ln(2)+2ln2(2)ln(2)
2ln2(2)-4ln(2)+2ln2(2)ln(2)
Step 10.2
Multiply the numerator by the reciprocal of the denominator.
2ln2(2)-4ln(2)+2ln2(2)⋅1ln(2)
Step 10.3
Multiply 2ln2(2)-4ln(2)+2ln2(2)⋅1ln(2).
Step 10.3.1
Multiply 2ln2(2)-4ln(2)+2ln2(2) by 1ln(2).
2ln2(2)-4ln(2)+2ln2(2)ln(2)
Step 10.3.2
Multiply ln2(2) by ln(2) by adding the exponents.
Step 10.3.2.1
Multiply ln2(2) by ln(2).
Step 10.3.2.1.1
Raise ln(2) to the power of 1.
2ln2(2)-4ln(2)+2ln2(2)ln1(2)
Step 10.3.2.1.2
Use the power rule aman=am+n to combine exponents.
2ln2(2)-4ln(2)+2ln(2)2+1
2ln2(2)-4ln(2)+2ln(2)2+1
Step 10.3.2.2
Add 2 and 1.
2ln2(2)-4ln(2)+2ln3(2)
2ln2(2)-4ln(2)+2ln3(2)
2ln2(2)-4ln(2)+2ln3(2)
2ln2(2)-4ln(2)+2ln3(2)
Step 11
The result can be shown in multiple forms.
Exact Form:
2ln2(2)-4ln(2)+2ln3(2)
Decimal Form:
0.56547557…
Step 12