Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Evaluate .
Step 1.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.3
Multiply by .
Step 1.1.1.3
Evaluate .
Step 1.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.3.3
Multiply by .
Step 1.1.1.4
Reorder terms.
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Factor out of .
Step 1.2.2.1
Factor out of .
Step 1.2.2.2
Factor out of .
Step 1.2.2.3
Factor out of .
Step 1.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.4
Set equal to .
Step 1.2.5
Set equal to and solve for .
Step 1.2.5.1
Set equal to .
Step 1.2.5.2
Add to both sides of the equation.
Step 1.2.6
The final solution is all the values that make true.
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Step 1.4.1
Evaluate at .
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Raising to any positive power yields .
Step 1.4.1.2.1.2
Multiply by .
Step 1.4.1.2.1.3
Raising to any positive power yields .
Step 1.4.1.2.1.4
Multiply by .
Step 1.4.1.2.2
Add and .
Step 1.4.2
Evaluate at .
Step 1.4.2.1
Substitute for .
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Raise to the power of .
Step 1.4.2.2.1.2
Multiply by .
Step 1.4.2.2.1.3
Raise to the power of .
Step 1.4.2.2.1.4
Multiply by .
Step 1.4.2.2.2
Subtract from .
Step 1.4.3
List all of the points.
Step 2
Exclude the points that are not on the interval.
Step 3
Step 3.1
Evaluate at .
Step 3.1.1
Substitute for .
Step 3.1.2
Simplify.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
One to any power is one.
Step 3.1.2.1.2
Multiply by .
Step 3.1.2.1.3
One to any power is one.
Step 3.1.2.1.4
Multiply by .
Step 3.1.2.2
Subtract from .
Step 3.2
Evaluate at .
Step 3.2.1
Substitute for .
Step 3.2.2
Simplify.
Step 3.2.2.1
Simplify each term.
Step 3.2.2.1.1
Apply the product rule to .
Step 3.2.2.1.2
Raise to the power of .
Step 3.2.2.1.3
Raise to the power of .
Step 3.2.2.1.4
Multiply .
Step 3.2.2.1.4.1
Combine and .
Step 3.2.2.1.4.2
Multiply by .
Step 3.2.2.1.5
Apply the product rule to .
Step 3.2.2.1.6
Raise to the power of .
Step 3.2.2.1.7
Raise to the power of .
Step 3.2.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.2.2.3.1
Multiply by .
Step 3.2.2.3.2
Multiply by .
Step 3.2.2.4
Combine the numerators over the common denominator.
Step 3.2.2.5
Simplify the numerator.
Step 3.2.2.5.1
Multiply by .
Step 3.2.2.5.2
Subtract from .
Step 3.3
List all of the points.
Step 4
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 5