Enter a problem...
Calculus Examples
∫2-2(x3cos(x2)+12)√4-x2dxdx∫2−2(x3cos(x2)+12)√4−x2dxdx
Step 1
Raise xx to the power of 11.
ddx[∫2-2(x3cos(x2)+12)√4-1d(x2x1)dx]ddx[∫2−2(x3cos(x2)+12)√4−1d(x2x1)dx]
Step 2
Use the power rule aman=am+naman=am+n to combine exponents.
ddx[∫2-2(x3cos(x2)+12)√4-1dx2+1dx]ddx[∫2−2(x3cos(x2)+12)√4−1dx2+1dx]
Step 3
Step 3.1
Add 22 and 11.
ddx[∫2-2(x3cos(x2)+12)√4-1dx3dx]ddx[∫2−2(x3cos(x2)+12)√4−1dx3dx]
Step 3.2
Rewrite -1d−1d as -d−d.
ddx[∫2-2(x3cos(x2)+12)√4-dx3dx]ddx[∫2−2(x3cos(x2)+12)√4−dx3dx]
Step 3.3
Use n√ax=axnn√ax=axn to rewrite √4-dx3√4−dx3 as (4-dx3)12(4−dx3)12.
ddx[∫2-2(x3cos(x2)+12)(4-dx3)12dx]ddx[∫2−2(x3cos(x2)+12)(4−dx3)12dx]
ddx[∫2-2(x3cos(x2)+12)(4-dx3)12dx]
Step 4
Once ∫2-2(x3cos(x2)+12)(4-dx3)12dx has been evaluated, it will be constant with respect to x, so the derivative of ∫2-2(x3cos(x2)+12)(4-dx3)12dx with respect to x is 0.
0