Calculus Examples

Find the Derivative of the Integral integral from -2 to 2 of (x^3cos(x/2)+1/2) square root of 4-x^2dx with respect to x
2-2(x3cos(x2)+12)4-x2dxdx22(x3cos(x2)+12)4x2dxdx
Step 1
Raise xx to the power of 11.
ddx[2-2(x3cos(x2)+12)4-1d(x2x1)dx]ddx[22(x3cos(x2)+12)41d(x2x1)dx]
Step 2
Use the power rule aman=am+naman=am+n to combine exponents.
ddx[2-2(x3cos(x2)+12)4-1dx2+1dx]ddx[22(x3cos(x2)+12)41dx2+1dx]
Step 3
Simplify the expression.
Tap for more steps...
Step 3.1
Add 22 and 11.
ddx[2-2(x3cos(x2)+12)4-1dx3dx]ddx[22(x3cos(x2)+12)41dx3dx]
Step 3.2
Rewrite -1d1d as -dd.
ddx[2-2(x3cos(x2)+12)4-dx3dx]ddx[22(x3cos(x2)+12)4dx3dx]
Step 3.3
Use nax=axnnax=axn to rewrite 4-dx34dx3 as (4-dx3)12(4dx3)12.
ddx[2-2(x3cos(x2)+12)(4-dx3)12dx]ddx[22(x3cos(x2)+12)(4dx3)12dx]
ddx[2-2(x3cos(x2)+12)(4-dx3)12dx]
Step 4
Once 2-2(x3cos(x2)+12)(4-dx3)12dx has been evaluated, it will be constant with respect to x, so the derivative of 2-2(x3cos(x2)+12)(4-dx3)12dx with respect to x is 0.
0
 [x2  12  π  xdx ]