Enter a problem...
Calculus Examples
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Differentiate using the Product Rule which states that is where and .
Step 1.2.2
Differentiate using the chain rule, which states that is where and .
Step 1.2.2.1
To apply the Chain Rule, set as .
Step 1.2.2.2
The derivative of with respect to is .
Step 1.2.2.3
Replace all occurrences of with .
Step 1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.2.5
Differentiate using the Power Rule which states that is where .
Step 1.2.6
Multiply by .
Step 1.2.7
Multiply by .
Step 1.2.8
Multiply by .
Step 1.3
Evaluate .
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the chain rule, which states that is where and .
Step 1.3.2.1
To apply the Chain Rule, set as .
Step 1.3.2.2
Differentiate using the Power Rule which states that is where .
Step 1.3.2.3
Replace all occurrences of with .
Step 1.3.3
The derivative of with respect to is .
Step 1.3.4
Multiply by .
Step 1.4
Reorder terms.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Product Rule which states that is where and .
Step 2.2.3
Differentiate using the chain rule, which states that is where and .
Step 2.2.3.1
To apply the Chain Rule, set as .
Step 2.2.3.2
The derivative of with respect to is .
Step 2.2.3.3
Replace all occurrences of with .
Step 2.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.5
Differentiate using the Power Rule which states that is where .
Step 2.2.6
Differentiate using the Power Rule which states that is where .
Step 2.2.7
Multiply by .
Step 2.2.8
Move to the left of .
Step 2.2.9
Multiply by .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Product Rule which states that is where and .
Step 2.3.3
The derivative of with respect to is .
Step 2.3.4
The derivative of with respect to is .
Step 2.3.5
Raise to the power of .
Step 2.3.6
Raise to the power of .
Step 2.3.7
Use the power rule to combine exponents.
Step 2.3.8
Add and .
Step 2.3.9
Raise to the power of .
Step 2.3.10
Raise to the power of .
Step 2.3.11
Use the power rule to combine exponents.
Step 2.3.12
Add and .
Step 2.4
Evaluate .
Step 2.4.1
Differentiate using the chain rule, which states that is where and .
Step 2.4.1.1
To apply the Chain Rule, set as .
Step 2.4.1.2
The derivative of with respect to is .
Step 2.4.1.3
Replace all occurrences of with .
Step 2.4.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.3
Differentiate using the Power Rule which states that is where .
Step 2.4.4
Multiply by .
Step 2.4.5
Multiply by .
Step 2.5
Simplify.
Step 2.5.1
Apply the distributive property.
Step 2.5.2
Apply the distributive property.
Step 2.5.3
Combine terms.
Step 2.5.3.1
Multiply by .
Step 2.5.3.2
Multiply by .
Step 2.5.3.3
Subtract from .