Enter a problem...
Calculus Examples
limx→0+(1x)x
Step 1
Step 1.1
Rewrite (1x)x as eln((1x)x).
limx→0+eln((1x)x)
Step 1.2
Expand ln((1x)x) by moving x outside the logarithm.
limx→0+exln(1x)
limx→0+exln(1x)
Step 2
Move the limit into the exponent.
elimx→0+xln(1x)
Step 3
Rewrite xln(1x) as ln(1x)1x.
elimx→0+ln(1x)1x
Step 4
Step 4.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 4.1.1
Take the limit of the numerator and the limit of the denominator.
elimx→0+ln(1x)limx→0+1x
Step 4.1.2
As log approaches infinity, the value goes to ∞.
e∞limx→0+1x
Step 4.1.3
Since the numerator is a constant and the denominator approaches 0 when x approaches 0 from the right, the fraction 1x approaches infinity.
e∞∞
Step 4.1.4
Infinity divided by infinity is undefined.
Undefined
e∞∞
Step 4.2
Since ∞∞ is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
limx→0+ln(1x)1x=limx→0+ddx[ln(1x)]ddx[1x]
Step 4.3
Find the derivative of the numerator and denominator.
Step 4.3.1
Differentiate the numerator and denominator.
elimx→0+ddx[ln(1x)]ddx[1x]
Step 4.3.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ln(x) and g(x)=1x.
Step 4.3.2.1
To apply the Chain Rule, set u as 1x.
elimx→0+ddu[ln(u)]ddx[1x]ddx[1x]
Step 4.3.2.2
The derivative of ln(u) with respect to u is 1u.
elimx→0+1uddx[1x]ddx[1x]
Step 4.3.2.3
Replace all occurrences of u with 1x.
elimx→0+11xddx[1x]ddx[1x]
elimx→0+11xddx[1x]ddx[1x]
Step 4.3.3
Multiply by the reciprocal of the fraction to divide by 1x.
elimx→0+1xddx[1x]ddx[1x]
Step 4.3.4
Multiply x by 1.
elimx→0+xddx[1x]ddx[1x]
Step 4.3.5
Rewrite 1x as x-1.
elimx→0+xddx[x-1]ddx[1x]
Step 4.3.6
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=-1.
elimx→0+x⋅-1x-2ddx[1x]
Step 4.3.7
Raise x to the power of 1.
elimx→0+-x1x-2ddx[1x]
Step 4.3.8
Use the power rule aman=am+n to combine exponents.
elimx→0+-x1-2ddx[1x]
Step 4.3.9
Subtract 2 from 1.
elimx→0+-x-1ddx[1x]
Step 4.3.10
Rewrite the expression using the negative exponent rule b-n=1bn.
elimx→0+-1xddx[1x]
Step 4.3.11
Rewrite 1x as x-1.
elimx→0+-1xddx[x-1]
Step 4.3.12
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=-1.
elimx→0+-1x-x-2
Step 4.3.13
Rewrite the expression using the negative exponent rule b-n=1bn.
elimx→0+-1x-1x2
elimx→0+-1x-1x2
Step 4.4
Multiply the numerator by the reciprocal of the denominator.
elimx→0+-1x⋅-1x2
Step 4.5
Combine factors.
Step 4.5.1
Multiply -1 by -1.
elimx→0+11xx2
Step 4.5.2
Multiply 1x by 1.
elimx→0+1xx2
Step 4.5.3
Combine 1x and x2.
elimx→0+x2x
elimx→0+x2x
Step 4.6
Cancel the common factor of x2 and x.
Step 4.6.1
Factor x out of x2.
elimx→0+x⋅xx
Step 4.6.2
Cancel the common factors.
Step 4.6.2.1
Raise x to the power of 1.
elimx→0+x⋅xx1
Step 4.6.2.2
Factor x out of x1.
elimx→0+x⋅xx⋅1
Step 4.6.2.3
Cancel the common factor.
elimx→0+x⋅xx⋅1
Step 4.6.2.4
Rewrite the expression.
elimx→0+x1
Step 4.6.2.5
Divide x by 1.
elimx→0+x
elimx→0+x
elimx→0+x
elimx→0+x
Step 5
Evaluate the limit of x by plugging in 0 for x.
e0
Step 6
Anything raised to 0 is 1.
1