Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Step 4.1
Move out of the denominator by raising it to the power.
Step 4.2
Multiply the exponents in .
Step 4.2.1
Apply the power rule and multiply exponents, .
Step 4.2.2
Multiply by .
Step 5
Multiply .
Step 6
Step 6.1
Multiply by by adding the exponents.
Step 6.1.1
Multiply by .
Step 6.1.1.1
Raise to the power of .
Step 6.1.1.2
Use the power rule to combine exponents.
Step 6.1.2
Subtract from .
Step 6.2
Rewrite as .
Step 7
Split the single integral into multiple integrals.
Step 8
The integral of with respect to is .
Step 9
Since is constant with respect to , move out of the integral.
Step 10
By the Power Rule, the integral of with respect to is .
Step 11
Step 11.1
Simplify.
Step 11.2
Simplify.
Step 11.2.1
Multiply by .
Step 11.2.2
Multiply by .
Step 12
The answer is the antiderivative of the function .