Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Differentiate using the Power Rule which states that is where .
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Factor out of .
Step 3.1.1.1
Factor out of .
Step 3.1.1.2
Factor out of .
Step 3.1.1.3
Factor out of .
Step 3.1.2
Rewrite as .
Step 3.1.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.2
Simplify terms.
Step 3.2.1
Cancel the common factor of .
Step 3.2.1.1
Cancel the common factor.
Step 3.2.1.2
Divide by .
Step 3.2.2
Apply the distributive property.
Step 3.2.3
Multiply by .
Step 3.3
By the Sum Rule, the derivative of with respect to is .
Step 3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.5
Rewrite as .
Step 3.6
Since is constant with respect to , the derivative of with respect to is .
Step 3.7
Add and .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Rewrite the equation as .
Step 5.2
Divide each term in by and simplify.
Step 5.2.1
Divide each term in by .
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of .
Step 5.2.2.1.1
Cancel the common factor.
Step 5.2.2.1.2
Divide by .
Step 6
Replace with .