Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Factor out of .
Step 1.2.2
Cancel the common factor.
Step 1.2.3
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Let . Then , so . Rewrite using and .
Step 2.3.2.1
Let . Find .
Step 2.3.2.1.1
Differentiate .
Step 2.3.2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.2.1.4
Multiply by .
Step 2.3.2.2
Rewrite the problem using and .
Step 2.3.3
Combine and .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
Simplify.
Step 2.3.5.1
Multiply by .
Step 2.3.5.2
Move to the left of .
Step 2.3.6
The integral of with respect to is .
Step 2.3.7
Simplify.
Step 2.3.7.1
Simplify.
Step 2.3.7.2
Combine and .
Step 2.3.8
Replace all occurrences of with .
Step 2.3.9
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Combine and .
Step 3.2.2.1.1.2
Move to the left of .
Step 3.2.2.1.2
Simplify terms.
Step 3.2.2.1.2.1
Apply the distributive property.
Step 3.2.2.1.2.2
Cancel the common factor of .
Step 3.2.2.1.2.2.1
Move the leading negative in into the numerator.
Step 3.2.2.1.2.2.2
Factor out of .
Step 3.2.2.1.2.2.3
Cancel the common factor.
Step 3.2.2.1.2.2.4
Rewrite the expression.
Step 3.2.2.1.2.3
Move the negative in front of the fraction.
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.4.1
First, use the positive value of the to find the first solution.
Step 3.4.2
Next, use the negative value of the to find the second solution.
Step 3.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Simplify the constant of integration.