Calculus Examples

Solve the Differential Equation (dy)/(dx)=4y^-2
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.2
Move to the numerator using the negative exponent rule .
Step 1.2.3
Multiply by by adding the exponents.
Tap for more steps...
Step 1.2.3.1
Move .
Step 1.2.3.2
Use the power rule to combine exponents.
Step 1.2.3.3
Add and .
Step 1.2.4
Simplify .
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Move to the numerator using the negative exponent rule .
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Apply the constant rule.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify .
Tap for more steps...
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify .
Tap for more steps...
Step 3.2.2.1.1
Apply the distributive property.
Step 3.2.2.1.2
Multiply by .
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Factor out of .
Tap for more steps...
Step 3.4.1
Factor out of .
Step 3.4.2
Factor out of .