Calculus Examples

Solve the Differential Equation y(x^2-1)dy+x(y^2-1)dx=0
Step 1
Subtract from both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Cancel the common factor of .
Tap for more steps...
Step 3.1.1
Factor out of .
Step 3.1.2
Cancel the common factor.
Step 3.1.3
Rewrite the expression.
Step 3.2
Combine and .
Step 3.3
Simplify the denominator.
Tap for more steps...
Step 3.3.1
Rewrite as .
Step 3.3.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.4
Rewrite using the commutative property of multiplication.
Step 3.5
Cancel the common factor of .
Tap for more steps...
Step 3.5.1
Move the leading negative in into the numerator.
Step 3.5.2
Factor out of .
Step 3.5.3
Factor out of .
Step 3.5.4
Cancel the common factor.
Step 3.5.5
Rewrite the expression.
Step 3.6
Combine and .
Step 3.7
Simplify the denominator.
Tap for more steps...
Step 3.7.1
Rewrite as .
Step 3.7.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.8
Move the negative in front of the fraction.
Step 4
Integrate both sides.
Tap for more steps...
Step 4.1
Set up an integral on each side.
Step 4.2
Integrate the left side.
Tap for more steps...
Step 4.2.1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 4.2.1.1
Let . Find .
Tap for more steps...
Step 4.2.1.1.1
Differentiate .
Step 4.2.1.1.2
Differentiate using the Product Rule which states that is where and .
Step 4.2.1.1.3
Differentiate.
Tap for more steps...
Step 4.2.1.1.3.1
By the Sum Rule, the derivative of with respect to is .
Step 4.2.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 4.2.1.1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.1.1.3.4
Simplify the expression.
Tap for more steps...
Step 4.2.1.1.3.4.1
Add and .
Step 4.2.1.1.3.4.2
Multiply by .
Step 4.2.1.1.3.5
By the Sum Rule, the derivative of with respect to is .
Step 4.2.1.1.3.6
Differentiate using the Power Rule which states that is where .
Step 4.2.1.1.3.7
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.1.1.3.8
Simplify by adding terms.
Tap for more steps...
Step 4.2.1.1.3.8.1
Add and .
Step 4.2.1.1.3.8.2
Multiply by .
Step 4.2.1.1.3.8.3
Add and .
Step 4.2.1.1.3.8.4
Simplify by subtracting numbers.
Tap for more steps...
Step 4.2.1.1.3.8.4.1
Subtract from .
Step 4.2.1.1.3.8.4.2
Add and .
Step 4.2.1.2
Rewrite the problem using and .
Step 4.2.2
Simplify.
Tap for more steps...
Step 4.2.2.1
Multiply by .
Step 4.2.2.2
Move to the left of .
Step 4.2.3
Since is constant with respect to , move out of the integral.
Step 4.2.4
The integral of with respect to is .
Step 4.2.5
Simplify.
Step 4.2.6
Replace all occurrences of with .
Step 4.3
Integrate the right side.
Tap for more steps...
Step 4.3.1
Since is constant with respect to , move out of the integral.
Step 4.3.2
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 4.3.2.1
Let . Find .
Tap for more steps...
Step 4.3.2.1.1
Differentiate .
Step 4.3.2.1.2
Differentiate using the Product Rule which states that is where and .
Step 4.3.2.1.3
Differentiate.
Tap for more steps...
Step 4.3.2.1.3.1
By the Sum Rule, the derivative of with respect to is .
Step 4.3.2.1.3.2
Differentiate using the Power Rule which states that is where .
Step 4.3.2.1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.2.1.3.4
Simplify the expression.
Tap for more steps...
Step 4.3.2.1.3.4.1
Add and .
Step 4.3.2.1.3.4.2
Multiply by .
Step 4.3.2.1.3.5
By the Sum Rule, the derivative of with respect to is .
Step 4.3.2.1.3.6
Differentiate using the Power Rule which states that is where .
Step 4.3.2.1.3.7
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.2.1.3.8
Simplify by adding terms.
Tap for more steps...
Step 4.3.2.1.3.8.1
Add and .
Step 4.3.2.1.3.8.2
Multiply by .
Step 4.3.2.1.3.8.3
Add and .
Step 4.3.2.1.3.8.4
Simplify by subtracting numbers.
Tap for more steps...
Step 4.3.2.1.3.8.4.1
Subtract from .
Step 4.3.2.1.3.8.4.2
Add and .
Step 4.3.2.2
Rewrite the problem using and .
Step 4.3.3
Simplify.
Tap for more steps...
Step 4.3.3.1
Multiply by .
Step 4.3.3.2
Move to the left of .
Step 4.3.4
Since is constant with respect to , move out of the integral.
Step 4.3.5
The integral of with respect to is .
Step 4.3.6
Simplify.
Step 4.3.7
Replace all occurrences of with .
Step 4.4
Group the constant of integration on the right side as .
Step 5
Solve for .
Tap for more steps...
Step 5.1
Multiply both sides of the equation by .
Step 5.2
Simplify both sides of the equation.
Tap for more steps...
Step 5.2.1
Simplify the left side.
Tap for more steps...
Step 5.2.1.1
Simplify .
Tap for more steps...
Step 5.2.1.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.1.1.1.1
Apply the distributive property.
Step 5.2.1.1.1.2
Apply the distributive property.
Step 5.2.1.1.1.3
Apply the distributive property.
Step 5.2.1.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1.1.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1.2.1.1
Multiply by .
Step 5.2.1.1.2.1.2
Move to the left of .
Step 5.2.1.1.2.1.3
Rewrite as .
Step 5.2.1.1.2.1.4
Multiply by .
Step 5.2.1.1.2.1.5
Multiply by .
Step 5.2.1.1.2.2
Add and .
Step 5.2.1.1.2.3
Add and .
Step 5.2.1.1.3
Combine and .
Step 5.2.1.1.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.1.1.4.1
Cancel the common factor.
Step 5.2.1.1.4.2
Rewrite the expression.
Step 5.2.2
Simplify the right side.
Tap for more steps...
Step 5.2.2.1
Simplify .
Tap for more steps...
Step 5.2.2.1.1
Simplify each term.
Tap for more steps...
Step 5.2.2.1.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.2.1.1.1.1
Apply the distributive property.
Step 5.2.2.1.1.1.2
Apply the distributive property.
Step 5.2.2.1.1.1.3
Apply the distributive property.
Step 5.2.2.1.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.2.1.1.2.1
Simplify each term.
Tap for more steps...
Step 5.2.2.1.1.2.1.1
Multiply by .
Step 5.2.2.1.1.2.1.2
Move to the left of .
Step 5.2.2.1.1.2.1.3
Rewrite as .
Step 5.2.2.1.1.2.1.4
Multiply by .
Step 5.2.2.1.1.2.1.5
Multiply by .
Step 5.2.2.1.1.2.2
Add and .
Step 5.2.2.1.1.2.3
Add and .
Step 5.2.2.1.1.3
Combine and .
Step 5.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.2.1.3
Simplify terms.
Tap for more steps...
Step 5.2.2.1.3.1
Combine and .
Step 5.2.2.1.3.2
Combine the numerators over the common denominator.
Step 5.2.2.1.3.3
Cancel the common factor of .
Tap for more steps...
Step 5.2.2.1.3.3.1
Cancel the common factor.
Step 5.2.2.1.3.3.2
Rewrite the expression.
Step 5.2.2.1.4
Move to the left of .
Step 5.3
Move all the terms containing a logarithm to the left side of the equation.
Step 5.4
Use the product property of logarithms, .
Step 5.5
To multiply absolute values, multiply the terms inside each absolute value.
Step 5.6
Expand using the FOIL Method.
Tap for more steps...
Step 5.6.1
Apply the distributive property.
Step 5.6.2
Apply the distributive property.
Step 5.6.3
Apply the distributive property.
Step 5.7
Simplify each term.
Tap for more steps...
Step 5.7.1
Move to the left of .
Step 5.7.2
Rewrite as .
Step 5.7.3
Rewrite as .
Step 5.7.4
Multiply by .
Step 5.8
To solve for , rewrite the equation using properties of logarithms.
Step 5.9
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 5.10
Solve for .
Tap for more steps...
Step 5.10.1
Rewrite the equation as .
Step 5.10.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 5.10.3
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 5.10.3.1
Add to both sides of the equation.
Step 5.10.3.2
Subtract from both sides of the equation.
Step 5.10.4
Factor out of .
Tap for more steps...
Step 5.10.4.1
Factor out of .
Step 5.10.4.2
Factor out of .
Step 5.10.4.3
Factor out of .
Step 5.10.5
Rewrite as .
Step 5.10.6
Factor.
Tap for more steps...
Step 5.10.6.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 5.10.6.2
Remove unnecessary parentheses.
Step 5.10.7
Divide each term in by and simplify.
Tap for more steps...
Step 5.10.7.1
Divide each term in by .
Step 5.10.7.2
Simplify the left side.
Tap for more steps...
Step 5.10.7.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.10.7.2.1.1
Cancel the common factor.
Step 5.10.7.2.1.2
Rewrite the expression.
Step 5.10.7.2.2
Cancel the common factor of .
Tap for more steps...
Step 5.10.7.2.2.1
Cancel the common factor.
Step 5.10.7.2.2.2
Divide by .
Step 5.10.7.3
Simplify the right side.
Tap for more steps...
Step 5.10.7.3.1
Move the negative in front of the fraction.
Step 5.10.8
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.10.9
Simplify .
Tap for more steps...
Step 5.10.9.1
Combine the numerators over the common denominator.
Step 5.10.9.2
Combine the numerators over the common denominator.
Step 5.10.9.3
Rewrite as .
Step 5.10.9.4
Multiply by .
Step 5.10.9.5
Combine and simplify the denominator.
Tap for more steps...
Step 5.10.9.5.1
Multiply by .
Step 5.10.9.5.2
Raise to the power of .
Step 5.10.9.5.3
Raise to the power of .
Step 5.10.9.5.4
Use the power rule to combine exponents.
Step 5.10.9.5.5
Add and .
Step 5.10.9.5.6
Rewrite as .
Tap for more steps...
Step 5.10.9.5.6.1
Use to rewrite as .
Step 5.10.9.5.6.2
Apply the power rule and multiply exponents, .
Step 5.10.9.5.6.3
Combine and .
Step 5.10.9.5.6.4
Cancel the common factor of .
Tap for more steps...
Step 5.10.9.5.6.4.1
Cancel the common factor.
Step 5.10.9.5.6.4.2
Rewrite the expression.
Step 5.10.9.5.6.5
Simplify.
Step 5.10.9.6
Combine using the product rule for radicals.
Step 6
Simplify the constant of integration.