Calculus Examples

Solve the Differential Equation (dy)/(dt)=ty
dydt=ty
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by 1y.
1ydydt=1y(ty)
Step 1.2
Cancel the common factor of y.
Tap for more steps...
Step 1.2.1
Factor y out of ty.
1ydydt=1y(yt)
Step 1.2.2
Cancel the common factor.
1ydydt=1y(yt)
Step 1.2.3
Rewrite the expression.
1ydydt=t
1ydydt=t
Step 1.3
Rewrite the equation.
1ydy=tdt
1ydy=tdt
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
1ydy=tdt
Step 2.2
The integral of 1y with respect to y is ln(|y|).
ln(|y|)+C1=tdt
Step 2.3
By the Power Rule, the integral of t with respect to t is 12t2.
ln(|y|)+C1=12t2+C2
Step 2.4
Group the constant of integration on the right side as C.
ln(|y|)=12t2+C
ln(|y|)=12t2+C
Step 3
Solve for y.
Tap for more steps...
Step 3.1
To solve for y, rewrite the equation using properties of logarithms.
eln(|y|)=e12t2+C
Step 3.2
Rewrite ln(|y|)=12t2+C in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
e12t2+C=|y|
Step 3.3
Solve for y.
Tap for more steps...
Step 3.3.1
Rewrite the equation as |y|=e12t2+C.
|y|=e12t2+C
Step 3.3.2
Combine 12 and t2.
|y|=et22+C
Step 3.3.3
Remove the absolute value term. This creates a ± on the right side of the equation because |x|=±x.
y=±et22+C
y=±et22+C
y=±et22+C
Step 4
Group the constant terms together.
Tap for more steps...
Step 4.1
Rewrite et22+C as et22eC.
y=±et22eC
Step 4.2
Reorder et22 and eC.
y=±eCet22
Step 4.3
Combine constants with the plus or minus.
y=Cet22
y=Cet22
 [x2  12  π  xdx ]