Enter a problem...
Calculus Examples
d2sdt2=sin(3t)+cos(3t)
Step 1
Step 1.1
The first derivative is equal to the integral of the second derivative with respect to t.
dsdt=∫sin(3t)+cos(3t)dt
Step 1.2
Split the single integral into multiple integrals.
dsdt=∫sin(3t)dt+∫cos(3t)dt
Step 1.3
Let u1=3t. Then du1=3dt, so 13du1=dt. Rewrite using u1 and du1.
Step 1.3.1
Let u1=3t. Find du1dt.
Step 1.3.1.1
Differentiate 3t.
ddt[3t]
Step 1.3.1.2
Since 3 is constant with respect to t, the derivative of 3t with respect to t is 3ddt[t].
3ddt[t]
Step 1.3.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
3⋅1
Step 1.3.1.4
Multiply 3 by 1.
3
3
Step 1.3.2
Rewrite the problem using u1 and du1.
dsdt=∫sin(u1)13du1+∫cos(3t)dt
dsdt=∫sin(u1)13du1+∫cos(3t)dt
Step 1.4
Combine sin(u1) and 13.
dsdt=∫sin(u1)3du1+∫cos(3t)dt
Step 1.5
Since 13 is constant with respect to u1, move 13 out of the integral.
dsdt=13∫sin(u1)du1+∫cos(3t)dt
Step 1.6
The integral of sin(u1) with respect to u1 is -cos(u1).
dsdt=13(-cos(u1)+C1)+∫cos(3t)dt
Step 1.7
Let u2=3t. Then du2=3dt, so 13du2=dt. Rewrite using u2 and du2.
Step 1.7.1
Let u2=3t. Find du2dt.
Step 1.7.1.1
Differentiate 3t.
ddt[3t]
Step 1.7.1.2
Since 3 is constant with respect to t, the derivative of 3t with respect to t is 3ddt[t].
3ddt[t]
Step 1.7.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
3⋅1
Step 1.7.1.4
Multiply 3 by 1.
3
3
Step 1.7.2
Rewrite the problem using u2 and du2.
dsdt=13(-cos(u1)+C1)+∫cos(u2)13du2
dsdt=13(-cos(u1)+C1)+∫cos(u2)13du2
Step 1.8
Combine cos(u2) and 13.
dsdt=13(-cos(u1)+C1)+∫cos(u2)3du2
Step 1.9
Since 13 is constant with respect to u2, move 13 out of the integral.
dsdt=13(-cos(u1)+C1)+13∫cos(u2)du2
Step 1.10
The integral of cos(u2) with respect to u2 is sin(u2).
dsdt=13(-cos(u1)+C1)+13(sin(u2)+C2)
Step 1.11
Simplify.
dsdt=-cos(u1)3+13sin(u2)+C3
Step 1.12
Substitute back in for each integration substitution variable.
Step 1.12.1
Replace all occurrences of u1 with 3t.
dsdt=-cos(3t)3+13sin(u2)+C3
Step 1.12.2
Replace all occurrences of u2 with 3t.
dsdt=-cos(3t)3+13sin(3t)+C3
dsdt=-cos(3t)3+13sin(3t)+C3
Step 1.13
Reorder terms.
dsdt=-13cos(3t)+13sin(3t)+C3
dsdt=-13cos(3t)+13sin(3t)+C3
Step 2
Rewrite the equation.
ds=(-13cos(3t)+13sin(3t)+C3)dt
Step 3
Step 3.1
Set up an integral on each side.
∫ds=∫-13cos(3t)+13sin(3t)+C3dt
Step 3.2
Apply the constant rule.
s+C4=∫-13cos(3t)+13sin(3t)+C3dt
Step 3.3
Integrate the right side.
Step 3.3.1
Split the single integral into multiple integrals.
s+C4=∫-13cos(3t)dt+∫13sin(3t)dt+∫C3dt
Step 3.3.2
Since -13 is constant with respect to t, move -13 out of the integral.
s+C4=-13∫cos(3t)dt+∫13sin(3t)dt+∫C3dt
Step 3.3.3
Let u3=3t. Then du3=3dt, so 13du3=dt. Rewrite using u3 and du3.
Step 3.3.3.1
Let u3=3t. Find du3dt.
Step 3.3.3.1.1
Differentiate 3t.
ddt[3t]
Step 3.3.3.1.2
Since 3 is constant with respect to t, the derivative of 3t with respect to t is 3ddt[t].
3ddt[t]
Step 3.3.3.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
3⋅1
Step 3.3.3.1.4
Multiply 3 by 1.
3
3
Step 3.3.3.2
Rewrite the problem using u3 and du3.
s+C4=-13∫cos(u3)13du3+∫13sin(3t)dt+∫C3dt
s+C4=-13∫cos(u3)13du3+∫13sin(3t)dt+∫C3dt
Step 3.3.4
Combine cos(u3) and 13.
s+C4=-13∫cos(u3)3du3+∫13sin(3t)dt+∫C3dt
Step 3.3.5
Since 13 is constant with respect to u3, move 13 out of the integral.
s+C4=-13(13∫cos(u3)du3)+∫13sin(3t)dt+∫C3dt
Step 3.3.6
Simplify.
Step 3.3.6.1
Multiply 13 by 13.
s+C4=-13⋅3∫cos(u3)du3+∫13sin(3t)dt+∫C3dt
Step 3.3.6.2
Multiply 3 by 3.
s+C4=-19∫cos(u3)du3+∫13sin(3t)dt+∫C3dt
s+C4=-19∫cos(u3)du3+∫13sin(3t)dt+∫C3dt
Step 3.3.7
The integral of cos(u3) with respect to u3 is sin(u3).
s+C4=-19(sin(u3)+C5)+∫13sin(3t)dt+∫C3dt
Step 3.3.8
Since 13 is constant with respect to t, move 13 out of the integral.
s+C4=-19(sin(u3)+C5)+13∫sin(3t)dt+∫C3dt
Step 3.3.9
Let u4=3t. Then du4=3dt, so 13du4=dt. Rewrite using u4 and du4.
Step 3.3.9.1
Let u4=3t. Find du4dt.
Step 3.3.9.1.1
Differentiate 3t.
ddt[3t]
Step 3.3.9.1.2
Since 3 is constant with respect to t, the derivative of 3t with respect to t is 3ddt[t].
3ddt[t]
Step 3.3.9.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
3⋅1
Step 3.3.9.1.4
Multiply 3 by 1.
3
3
Step 3.3.9.2
Rewrite the problem using u4 and du4.
s+C4=-19(sin(u3)+C5)+13∫sin(u4)13du4+∫C3dt
s+C4=-19(sin(u3)+C5)+13∫sin(u4)13du4+∫C3dt
Step 3.3.10
Combine sin(u4) and 13.
s+C4=-19(sin(u3)+C5)+13∫sin(u4)3du4+∫C3dt
Step 3.3.11
Since 13 is constant with respect to u4, move 13 out of the integral.
s+C4=-19(sin(u3)+C5)+13(13∫sin(u4)du4)+∫C3dt
Step 3.3.12
Simplify.
Step 3.3.12.1
Multiply 13 by 13.
s+C4=-19(sin(u3)+C5)+13⋅3∫sin(u4)du4+∫C3dt
Step 3.3.12.2
Multiply 3 by 3.
s+C4=-19(sin(u3)+C5)+19∫sin(u4)du4+∫C3dt
s+C4=-19(sin(u3)+C5)+19∫sin(u4)du4+∫C3dt
Step 3.3.13
The integral of sin(u4) with respect to u4 is -cos(u4).
s+C4=-19(sin(u3)+C5)+19(-cos(u4)+C6)+∫C3dt
Step 3.3.14
Apply the constant rule.
s+C4=-19(sin(u3)+C5)+19(-cos(u4)+C6)+C3t+C7
Step 3.3.15
Simplify.
s+C4=-sin(u3)9-cos(u4)9+C3t+C8
Step 3.3.16
Substitute back in for each integration substitution variable.
Step 3.3.16.1
Replace all occurrences of u3 with 3t.
s+C4=-sin(3t)9-cos(u4)9+C3t+C8
Step 3.3.16.2
Replace all occurrences of u4 with 3t.
s+C4=-sin(3t)9-cos(3t)9+C3t+C8
s+C4=-sin(3t)9-cos(3t)9+C3t+C8
Step 3.3.17
Reorder terms.
s+C4=-19sin(3t)-19cos(3t)+C3t+C8
s+C4=-19sin(3t)-19cos(3t)+C3t+C8
Step 3.4
Group the constant of integration on the right side as D.
s=-19sin(3t)-19cos(3t)+Ct+D
s=-19sin(3t)-19cos(3t)+Ct+D