Calculus Examples

Solve the Differential Equation x^2(dy)/(dx)=6x^4+5x+5
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Divide each term in by and simplify.
Tap for more steps...
Step 1.1.1
Divide each term in by .
Step 1.1.2
Simplify the left side.
Tap for more steps...
Step 1.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.1.2.1.1
Cancel the common factor.
Step 1.1.2.1.2
Divide by .
Step 1.1.3
Simplify the right side.
Tap for more steps...
Step 1.1.3.1
Simplify each term.
Tap for more steps...
Step 1.1.3.1.1
Cancel the common factor of and .
Tap for more steps...
Step 1.1.3.1.1.1
Factor out of .
Step 1.1.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.1.1.2.1
Multiply by .
Step 1.1.3.1.1.2.2
Cancel the common factor.
Step 1.1.3.1.1.2.3
Rewrite the expression.
Step 1.1.3.1.1.2.4
Divide by .
Step 1.1.3.1.2
Cancel the common factor of and .
Tap for more steps...
Step 1.1.3.1.2.1
Factor out of .
Step 1.1.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.1.2.2.1
Factor out of .
Step 1.1.3.1.2.2.2
Cancel the common factor.
Step 1.1.3.1.2.2.3
Rewrite the expression.
Step 1.2
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
The integral of with respect to is .
Step 2.3.6
Since is constant with respect to , move out of the integral.
Step 2.3.7
Simplify the expression.
Tap for more steps...
Step 2.3.7.1
Move out of the denominator by raising it to the power.
Step 2.3.7.2
Simplify.
Tap for more steps...
Step 2.3.7.2.1
Combine and .
Step 2.3.7.2.2
Multiply the exponents in .
Tap for more steps...
Step 2.3.7.2.2.1
Apply the power rule and multiply exponents, .
Step 2.3.7.2.2.2
Multiply by .
Step 2.3.8
By the Power Rule, the integral of with respect to is .
Step 2.3.9
Simplify.
Tap for more steps...
Step 2.3.9.1
Simplify.
Step 2.3.9.2
Multiply by .
Step 2.3.10
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .