Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Let . Then , so . Rewrite using and .
Step 2.2.1.1
Let . Find .
Step 2.2.1.1.1
Rewrite.
Step 2.2.1.1.2
Divide by .
Step 2.2.1.2
Rewrite the problem using and .
Step 2.2.2
Split the fraction into multiple fractions.
Step 2.2.3
Since is constant with respect to , move out of the integral.
Step 2.2.4
Since is constant with respect to , move out of the integral.
Step 2.2.5
Multiply by .
Step 2.2.6
The integral of with respect to is .
Step 2.2.7
Simplify.
Step 2.2.8
Replace all occurrences of with .
Step 2.3
Apply the constant rule.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Divide each term in by and simplify.
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Cancel the common factor of .
Step 3.1.2.1.1
Cancel the common factor.
Step 3.1.2.1.2
Divide by .
Step 3.1.3
Simplify the right side.
Step 3.1.3.1
Simplify each term.
Step 3.1.3.1.1
Move the negative in front of the fraction.
Step 3.1.3.1.2
Move the negative in front of the fraction.
Step 3.2
To solve for , rewrite the equation using properties of logarithms.
Step 3.3
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3.4
Solve for .
Step 3.4.1
Rewrite the equation as .
Step 3.4.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 3.4.3
Subtract from both sides of the equation.
Step 3.4.4
Divide each term in by and simplify.
Step 3.4.4.1
Divide each term in by .
Step 3.4.4.2
Simplify the left side.
Step 3.4.4.2.1
Cancel the common factor of .
Step 3.4.4.2.1.1
Cancel the common factor.
Step 3.4.4.2.1.2
Divide by .
Step 3.4.4.3
Simplify the right side.
Step 3.4.4.3.1
Simplify each term.
Step 3.4.4.3.1.1
Combine the numerators over the common denominator.
Step 3.4.4.3.1.2
Simplify .
Step 3.4.4.3.1.3
Multiply by .
Step 3.4.4.3.1.4
Factor out of .
Step 3.4.4.3.1.5
Separate fractions.
Step 3.4.4.3.1.6
Divide by .
Step 3.4.4.3.1.7
Divide by .
Step 3.4.4.3.1.8
Divide by .
Step 4
Simplify the constant of integration.