Enter a problem...
Calculus Examples
,
Step 1
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
By the Power Rule, the integral of with respect to is .
Step 2.3.3
Since is constant with respect to , move out of the integral.
Step 2.3.4
By the Power Rule, the integral of with respect to is .
Step 2.3.5
Apply the constant rule.
Step 2.3.6
Simplify.
Step 2.3.6.1
Combine and .
Step 2.3.6.2
Simplify.
Step 2.3.6.3
Reorder terms.
Step 2.3.7
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Use the initial condition to find the value of by substituting for and for in .
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Simplify .
Step 4.2.1
Simplify each term.
Step 4.2.1.1
One to any power is one.
Step 4.2.1.2
Multiply by .
Step 4.2.1.3
One to any power is one.
Step 4.2.1.4
Multiply by .
Step 4.2.1.5
Multiply by .
Step 4.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.3
Combine and .
Step 4.2.4
Combine the numerators over the common denominator.
Step 4.2.5
Simplify the numerator.
Step 4.2.5.1
Multiply by .
Step 4.2.5.2
Add and .
Step 4.2.6
Move the negative in front of the fraction.
Step 4.2.7
To write as a fraction with a common denominator, multiply by .
Step 4.2.8
Combine and .
Step 4.2.9
Combine the numerators over the common denominator.
Step 4.2.10
Simplify the numerator.
Step 4.2.10.1
Multiply by .
Step 4.2.10.2
Add and .
Step 4.3
Move all terms not containing to the right side of the equation.
Step 4.3.1
Subtract from both sides of the equation.
Step 4.3.2
To write as a fraction with a common denominator, multiply by .
Step 4.3.3
Combine and .
Step 4.3.4
Combine the numerators over the common denominator.
Step 4.3.5
Simplify the numerator.
Step 4.3.5.1
Multiply by .
Step 4.3.5.2
Subtract from .
Step 5
Step 5.1
Substitute for .
Step 5.2
Combine and .