Calculus Examples

Solve the Differential Equation e^(-y)dx+(1-xe^(-y))dy=0
Step 1
Find where .
Tap for more steps...
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.2.3
Replace all occurrences of with .
Step 1.3
Differentiate.
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Simplify the expression.
Tap for more steps...
Step 1.3.3.1
Multiply by .
Step 1.3.3.2
Move to the left of .
Step 1.3.3.3
Rewrite as .
Step 2
Find where .
Tap for more steps...
Step 2.1
Differentiate with respect to .
Step 2.2
Differentiate.
Tap for more steps...
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Subtract from .
Step 3
Check that .
Tap for more steps...
Step 3.1
Substitute for and for .
Step 3.2
Since the two sides have been shown to be equivalent, the equation is an identity.
is an identity.
is an identity.
Step 4
Set equal to the integral of .
Step 5
Integrate to find .
Tap for more steps...
Step 5.1
Apply the constant rule.
Step 6
Since the integral of will contain an integration constant, we can replace with .
Step 7
Set .
Step 8
Find .
Tap for more steps...
Step 8.1
Differentiate with respect to .
Step 8.2
By the Sum Rule, the derivative of with respect to is .
Step 8.3
Evaluate .
Tap for more steps...
Step 8.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 8.3.2.1
To apply the Chain Rule, set as .
Step 8.3.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 8.3.2.3
Replace all occurrences of with .
Step 8.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.4
Differentiate using the Power Rule which states that is where .
Step 8.3.5
Multiply by .
Step 8.3.6
Move to the left of .
Step 8.3.7
Rewrite as .
Step 8.4
Differentiate using the function rule which states that the derivative of is .
Step 8.5
Simplify.
Tap for more steps...
Step 8.5.1
Reorder terms.
Step 8.5.2
Reorder factors in .
Step 9
Solve for .
Tap for more steps...
Step 9.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 9.1.1
Add to both sides of the equation.
Step 9.1.2
Combine the opposite terms in .
Tap for more steps...
Step 9.1.2.1
Add and .
Step 9.1.2.2
Add and .
Step 10
Find the antiderivative of to find .
Tap for more steps...
Step 10.1
Integrate both sides of .
Step 10.2
Evaluate .
Step 10.3
Apply the constant rule.
Step 11
Substitute for in .
Step 12
Reorder factors in .