Enter a problem...
Calculus Examples
,
Step 1
Add to both sides of the equation.
Step 2
Step 2.1
Set up the integration.
Step 2.2
Integrate .
Step 2.2.1
Since is constant with respect to , move out of the integral.
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.2.3
Simplify the answer.
Step 2.2.3.1
Rewrite as .
Step 2.2.3.2
Simplify.
Step 2.2.3.2.1
Combine and .
Step 2.2.3.2.2
Cancel the common factor of .
Step 2.2.3.2.2.1
Cancel the common factor.
Step 2.2.3.2.2.2
Rewrite the expression.
Step 2.2.3.2.3
Multiply by .
Step 2.3
Remove the constant of integration.
Step 3
Step 3.1
Multiply each term by .
Step 3.2
Rewrite using the commutative property of multiplication.
Step 3.3
Rewrite using the commutative property of multiplication.
Step 3.4
Multiply by by adding the exponents.
Step 3.4.1
Move .
Step 3.4.2
Use the power rule to combine exponents.
Step 3.4.3
Add and .
Step 3.5
Simplify .
Step 3.6
Reorder factors in .
Step 4
Rewrite the left side as a result of differentiating a product.
Step 5
Set up an integral on each side.
Step 6
Integrate the left side.
Step 7
Apply the constant rule.
Step 8
Step 8.1
Divide each term in by .
Step 8.2
Simplify the left side.
Step 8.2.1
Cancel the common factor of .
Step 8.2.1.1
Cancel the common factor.
Step 8.2.1.2
Divide by .
Step 9
Use the initial condition to find the value of by substituting for and for in .
Step 10
Step 10.1
Rewrite the equation as .
Step 10.2
Simplify .
Step 10.2.1
Combine fractions.
Step 10.2.1.1
Combine the numerators over the common denominator.
Step 10.2.1.2
Simplify the expression.
Step 10.2.1.2.1
Multiply by .
Step 10.2.1.2.2
Add and .
Step 10.2.2
Simplify the denominator.
Step 10.2.2.1
Raising to any positive power yields .
Step 10.2.2.2
Anything raised to is .
Step 10.2.3
Divide by .
Step 11
Step 11.1
Substitute for .