Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Factor out of .
Step 1.2.2
Cancel the common factor.
Step 1.2.3
Rewrite the expression.
Step 1.3
Remove unnecessary parentheses.
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Combine and .
Step 2.2.2
Since is constant with respect to , move out of the integral.
Step 2.2.3
Apply basic rules of exponents.
Step 2.2.3.1
Move out of the denominator by raising it to the power.
Step 2.2.3.2
Multiply the exponents in .
Step 2.2.3.2.1
Apply the power rule and multiply exponents, .
Step 2.2.3.2.2
Multiply by .
Step 2.2.4
By the Power Rule, the integral of with respect to is .
Step 2.2.5
Simplify the answer.
Step 2.2.5.1
Simplify.
Step 2.2.5.1.1
Combine and .
Step 2.2.5.1.2
Move to the denominator using the negative exponent rule .
Step 2.2.5.2
Simplify.
Step 2.2.5.3
Simplify.
Step 2.2.5.3.1
Multiply by .
Step 2.2.5.3.2
Combine and .
Step 2.2.5.3.3
Cancel the common factor of and .
Step 2.2.5.3.3.1
Factor out of .
Step 2.2.5.3.3.2
Cancel the common factors.
Step 2.2.5.3.3.2.1
Factor out of .
Step 2.2.5.3.3.2.2
Cancel the common factor.
Step 2.2.5.3.3.2.3
Rewrite the expression.
Step 2.2.5.3.4
Move the negative in front of the fraction.
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Apply the constant rule.
Step 2.3.5
Simplify.
Step 2.3.5.1
Combine and .
Step 2.3.5.2
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Find the LCD of the terms in the equation.
Step 3.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.1.2
The LCM of one and any expression is the expression.
Step 3.2
Multiply each term in by to eliminate the fractions.
Step 3.2.1
Multiply each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Move the leading negative in into the numerator.
Step 3.2.2.1.2
Cancel the common factor.
Step 3.2.2.1.3
Rewrite the expression.
Step 3.3
Solve the equation.
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Factor out of .
Step 3.3.2.1
Factor out of .
Step 3.3.2.2
Factor out of .
Step 3.3.2.3
Factor out of .
Step 3.3.2.4
Factor out of .
Step 3.3.2.5
Factor out of .
Step 3.3.3
Divide each term in by and simplify.
Step 3.3.3.1
Divide each term in by .
Step 3.3.3.2
Simplify the left side.
Step 3.3.3.2.1
Cancel the common factor of .
Step 3.3.3.2.1.1
Cancel the common factor.
Step 3.3.3.2.1.2
Divide by .
Step 3.3.3.3
Simplify the right side.
Step 3.3.3.3.1
Move the negative in front of the fraction.
Step 3.3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.3.5
Simplify .
Step 3.3.5.1
Rewrite as .
Step 3.3.5.1.1
Rewrite as .
Step 3.3.5.1.2
Rewrite as .
Step 3.3.5.2
Pull terms out from under the radical.
Step 3.3.5.3
Raise to the power of .
Step 3.3.5.4
Rewrite as .
Step 3.3.5.5
Any root of is .
Step 3.3.5.6
Multiply by .
Step 3.3.5.7
Combine and simplify the denominator.
Step 3.3.5.7.1
Multiply by .
Step 3.3.5.7.2
Raise to the power of .
Step 3.3.5.7.3
Use the power rule to combine exponents.
Step 3.3.5.7.4
Add and .
Step 3.3.5.7.5
Rewrite as .
Step 3.3.5.7.5.1
Use to rewrite as .
Step 3.3.5.7.5.2
Apply the power rule and multiply exponents, .
Step 3.3.5.7.5.3
Combine and .
Step 3.3.5.7.5.4
Cancel the common factor of .
Step 3.3.5.7.5.4.1
Cancel the common factor.
Step 3.3.5.7.5.4.2
Rewrite the expression.
Step 3.3.5.7.5.5
Simplify.
Step 3.3.5.8
Rewrite as .