Enter a problem...
Calculus Examples
Step 1
Step 1.1
Regroup factors.
Step 1.2
Multiply both sides by .
Step 1.3
Simplify.
Step 1.3.1
Multiply by .
Step 1.3.2
Cancel the common factor of .
Step 1.3.2.1
Factor out of .
Step 1.3.2.2
Cancel the common factor.
Step 1.3.2.3
Rewrite the expression.
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Split the fraction into multiple fractions.
Step 2.3.2
Split the single integral into multiple integrals.
Step 2.3.3
Cancel the common factor of .
Step 2.3.3.1
Cancel the common factor.
Step 2.3.3.2
Divide by .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
The integral of with respect to is .
Step 2.3.6
Apply the constant rule.
Step 2.3.7
Simplify.
Step 2.3.8
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Apply the distributive property.
Step 3.2.2.1.2
Simplify.
Step 3.2.2.1.2.1
Multiply by .
Step 3.2.2.1.2.2
Multiply by .
Step 3.3
Simplify by moving inside the logarithm.
Step 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4
Simplify the constant of integration.