Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Let . Then , so . Rewrite using and .
Step 2.2.1.1
Let . Find .
Step 2.2.1.1.1
Rewrite.
Step 2.2.1.1.2
Divide by .
Step 2.2.1.2
Rewrite the problem using and .
Step 2.2.2
Since is constant with respect to , move out of the integral.
Step 2.2.3
The integral of with respect to is .
Step 2.2.4
Simplify.
Step 2.2.5
Replace all occurrences of with .
Step 2.3
Apply the constant rule.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Divide each term in by and simplify.
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Cancel the common factor of .
Step 3.1.2.1.1
Cancel the common factor.
Step 3.1.2.1.2
Divide by .
Step 3.2
To solve for , rewrite the equation using properties of logarithms.
Step 3.3
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3.4
Solve for .
Step 3.4.1
Rewrite the equation as .
Step 3.4.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 3.4.3
Subtract from both sides of the equation.
Step 3.4.4
Divide each term in by and simplify.
Step 3.4.4.1
Divide each term in by .
Step 3.4.4.2
Simplify the left side.
Step 3.4.4.2.1
Cancel the common factor of .
Step 3.4.4.2.1.1
Cancel the common factor.
Step 3.4.4.2.1.2
Divide by .
Step 3.4.4.3
Simplify the right side.
Step 3.4.4.3.1
Simplify each term.
Step 3.4.4.3.1.1
Combine the numerators over the common denominator.
Step 3.4.4.3.1.2
Multiply by .
Step 3.4.4.3.1.3
Factor out of .
Step 3.4.4.3.1.4
Separate fractions.
Step 3.4.4.3.1.5
Divide by .
Step 3.4.4.3.1.6
Divide by .
Step 3.4.4.3.1.7
Divide by .