Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3
Evaluate .
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Add and .
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
Multiply by .
Step 3
Step 3.1
Substitute for and for .
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
is not an identity.
is not an identity.
Step 4
Step 4.1
Substitute for .
Step 4.2
Substitute for .
Step 4.3
Substitute for .
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify the numerator.
Step 4.3.2.1
Factor out of .
Step 4.3.2.1.1
Factor out of .
Step 4.3.2.1.2
Factor out of .
Step 4.3.2.1.3
Factor out of .
Step 4.3.2.2
Multiply by .
Step 4.3.2.3
Subtract from .
Step 4.3.3
Cancel the common factor of .
Step 4.3.3.1
Cancel the common factor.
Step 4.3.3.2
Rewrite the expression.
Step 4.3.4
Cancel the common factor of .
Step 4.3.4.1
Cancel the common factor.
Step 4.3.4.2
Rewrite the expression.
Step 4.4
Find the integration factor .
Step 5
Step 5.1
The integral of with respect to is .
Step 5.2
Simplify the answer.
Step 5.2.1
Simplify.
Step 5.2.2
Exponentiation and log are inverse functions.
Step 6
Step 6.1
Multiply by .
Step 6.2
Apply the distributive property.
Step 6.3
Multiply by by adding the exponents.
Step 6.3.1
Move .
Step 6.3.2
Multiply by .
Step 6.4
Multiply by .
Step 6.5
Multiply by by adding the exponents.
Step 6.5.1
Move .
Step 6.5.2
Multiply by .
Step 7
Set equal to the integral of .
Step 8
Step 8.1
Since is constant with respect to , move out of the integral.
Step 8.2
By the Power Rule, the integral of with respect to is .
Step 8.3
Simplify the answer.
Step 8.3.1
Rewrite as .
Step 8.3.2
Simplify.
Step 8.3.2.1
Combine and .
Step 8.3.2.2
Combine and .
Step 8.3.2.3
Move to the left of .
Step 8.3.2.4
Multiply by .
Step 8.3.2.5
Cancel the common factor of .
Step 8.3.2.5.1
Cancel the common factor.
Step 8.3.2.5.2
Divide by .
Step 9
Since the integral of will contain an integration constant, we can replace with .
Step 10
Set .
Step 11
Step 11.1
Differentiate with respect to .
Step 11.2
By the Sum Rule, the derivative of with respect to is .
Step 11.3
Evaluate .
Step 11.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 11.3.2
Differentiate using the Power Rule which states that is where .
Step 11.3.3
Move to the left of .
Step 11.4
Differentiate using the function rule which states that the derivative of is .
Step 11.5
Reorder terms.
Step 12
Step 12.1
Move all terms not containing to the right side of the equation.
Step 12.1.1
Subtract from both sides of the equation.
Step 12.1.2
Combine the opposite terms in .
Step 12.1.2.1
Subtract from .
Step 12.1.2.2
Add and .
Step 13
Step 13.1
Integrate both sides of .
Step 13.2
Evaluate .
Step 13.3
Since is constant with respect to , move out of the integral.
Step 13.4
By the Power Rule, the integral of with respect to is .
Step 13.5
Simplify the answer.
Step 13.5.1
Rewrite as .
Step 13.5.2
Simplify.
Step 13.5.2.1
Combine and .
Step 13.5.2.2
Cancel the common factor of .
Step 13.5.2.2.1
Cancel the common factor.
Step 13.5.2.2.2
Rewrite the expression.
Step 13.5.2.3
Multiply by .
Step 14
Substitute for in .