Enter a problem...
Calculus Examples
Step 1
Step 1.1
Regroup factors.
Step 1.2
Multiply both sides by .
Step 1.3
Cancel the common factor of .
Step 1.3.1
Factor out of .
Step 1.3.2
Cancel the common factor.
Step 1.3.3
Rewrite the expression.
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Simplify the expression.
Step 2.2.1.1
Negate the exponent of and move it out of the denominator.
Step 2.2.1.2
Simplify.
Step 2.2.1.2.1
Multiply the exponents in .
Step 2.2.1.2.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.2.1.2
Multiply .
Step 2.2.1.2.1.2.1
Multiply by .
Step 2.2.1.2.1.2.2
Multiply by .
Step 2.2.1.2.2
Multiply by .
Step 2.2.2
The integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Let . Then , so . Rewrite using and .
Step 2.3.1.1
Let . Find .
Step 2.3.1.1.1
Differentiate .
Step 2.3.1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.1.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.1.1.4
Differentiate using the Power Rule which states that is where .
Step 2.3.1.1.5
Add and .
Step 2.3.1.2
Rewrite the problem using and .
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply by .
Step 2.3.2.2
Move to the left of .
Step 2.3.3
Since is constant with respect to , move out of the integral.
Step 2.3.4
The integral of with respect to is .
Step 2.3.5
Simplify.
Step 2.3.6
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 3.2
Expand the left side.
Step 3.2.1
Expand by moving outside the logarithm.
Step 3.2.2
The natural logarithm of is .
Step 3.2.3
Multiply by .
Step 3.3
Expand by moving outside the logarithm.
Step 3.4
Simplify by moving inside the logarithm.