Enter a problem...
Calculus Examples
Step 1
Step 1.1
Divide each term in by and simplify.
Step 1.1.1
Divide each term in by .
Step 1.1.2
Simplify the left side.
Step 1.1.2.1
Cancel the common factor of .
Step 1.1.2.1.1
Cancel the common factor.
Step 1.1.2.1.2
Divide by .
Step 1.1.3
Simplify the right side.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Cancel the common factor of and .
Step 1.1.3.1.1.1
Factor out of .
Step 1.1.3.1.1.2
Cancel the common factors.
Step 1.1.3.1.1.2.1
Factor out of .
Step 1.1.3.1.1.2.2
Cancel the common factor.
Step 1.1.3.1.1.2.3
Rewrite the expression.
Step 1.1.3.1.2
Move the negative in front of the fraction.
Step 1.2
Factor.
Step 1.2.1
To write as a fraction with a common denominator, multiply by .
Step 1.2.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 1.2.2.1
Multiply by .
Step 1.2.2.2
Raise to the power of .
Step 1.2.2.3
Raise to the power of .
Step 1.2.2.4
Use the power rule to combine exponents.
Step 1.2.2.5
Add and .
Step 1.2.3
Combine the numerators over the common denominator.
Step 1.2.4
Factor out of .
Step 1.2.4.1
Raise to the power of .
Step 1.2.4.2
Factor out of .
Step 1.2.4.3
Factor out of .
Step 1.2.4.4
Factor out of .
Step 1.2.4.5
Multiply by .
Step 1.3
Regroup factors.
Step 1.4
Multiply both sides by .
Step 1.5
Cancel the common factor of .
Step 1.5.1
Cancel the common factor.
Step 1.5.2
Rewrite the expression.
Step 1.6
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
The integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Apply basic rules of exponents.
Step 2.3.1.1
Move out of the denominator by raising it to the power.
Step 2.3.1.2
Multiply the exponents in .
Step 2.3.1.2.1
Apply the power rule and multiply exponents, .
Step 2.3.1.2.2
Multiply by .
Step 2.3.2
Multiply .
Step 2.3.3
Simplify.
Step 2.3.3.1
Multiply by .
Step 2.3.3.2
Multiply by by adding the exponents.
Step 2.3.3.2.1
Move .
Step 2.3.3.2.2
Multiply by .
Step 2.3.3.2.2.1
Raise to the power of .
Step 2.3.3.2.2.2
Use the power rule to combine exponents.
Step 2.3.3.2.3
Add and .
Step 2.3.4
Split the single integral into multiple integrals.
Step 2.3.5
By the Power Rule, the integral of with respect to is .
Step 2.3.6
Since is constant with respect to , move out of the integral.
Step 2.3.7
The integral of with respect to is .
Step 2.3.8
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Move all the terms containing a logarithm to the left side of the equation.
Step 3.2
Use the product property of logarithms, .
Step 3.3
To multiply absolute values, multiply the terms inside each absolute value.
Step 3.4
To solve for , rewrite the equation using properties of logarithms.
Step 3.5
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3.6
Solve for .
Step 3.6.1
Rewrite the equation as .
Step 3.6.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 3.6.3
Divide each term in by and simplify.
Step 3.6.3.1
Divide each term in by .
Step 3.6.3.2
Simplify the left side.
Step 3.6.3.2.1
Cancel the common factor of .
Step 3.6.3.2.1.1
Cancel the common factor.
Step 3.6.3.2.1.2
Divide by .
Step 3.6.3.3
Simplify the right side.
Step 3.6.3.3.1
Simplify the numerator.
Step 3.6.3.3.1.1
To write as a fraction with a common denominator, multiply by .
Step 3.6.3.3.1.2
Combine the numerators over the common denominator.