Enter a problem...
Calculus Examples
Step 1
Step 1.1
Factor out of .
Step 1.1.1
Factor out of .
Step 1.1.2
Factor out of .
Step 1.1.3
Factor out of .
Step 1.2
Multiply both sides by .
Step 1.3
Simplify.
Step 1.3.1
Cancel the common factor of .
Step 1.3.1.1
Factor out of .
Step 1.3.1.2
Cancel the common factor.
Step 1.3.1.3
Rewrite the expression.
Step 1.3.2
Apply the distributive property.
Step 1.3.3
Rewrite using the commutative property of multiplication.
Step 1.3.4
Move to the left of .
Step 1.3.5
Multiply by by adding the exponents.
Step 1.3.5.1
Move .
Step 1.3.5.2
Multiply by .
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
The integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
By the Power Rule, the integral of with respect to is .
Step 2.3.6
Simplify.
Step 2.3.6.1
Simplify.
Step 2.3.6.2
Simplify.
Step 2.3.6.2.1
Combine and .
Step 2.3.6.2.2
Combine and .
Step 2.3.6.2.3
Move the negative in front of the fraction.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
To solve for , rewrite the equation using properties of logarithms.
Step 3.2
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3.3
Solve for .
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Simplify each term.
Step 3.3.2.1
Combine and .
Step 3.3.2.2
Combine and .
Step 3.3.2.3
Move to the left of .
Step 3.3.3
Remove the absolute value term. This creates a on the right side of the equation because .
Step 4
Step 4.1
Rewrite as .
Step 4.2
Reorder and .
Step 4.3
Combine constants with the plus or minus.