Calculus Examples

Solve the Differential Equation (dy)/(dx)=xy , y(0)=1
,
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.1
Factor out of .
Step 1.2.2
Cancel the common factor.
Step 1.2.3
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
The integral of with respect to is .
Step 2.3
By the Power Rule, the integral of with respect to is .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
To solve for , rewrite the equation using properties of logarithms.
Step 3.2
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3.3
Solve for .
Tap for more steps...
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Combine and .
Step 3.3.3
Remove the absolute value term. This creates a on the right side of the equation because .
Step 4
Group the constant terms together.
Tap for more steps...
Step 4.1
Rewrite as .
Step 4.2
Reorder and .
Step 4.3
Combine constants with the plus or minus.
Step 5
Use the initial condition to find the value of by substituting for and for in .
Step 6
Solve for .
Tap for more steps...
Step 6.1
Rewrite the equation as .
Step 6.2
Simplify .
Tap for more steps...
Step 6.2.1
Raising to any positive power yields .
Step 6.2.2
Divide by .
Step 6.2.3
Anything raised to is .
Step 6.2.4
Multiply by .
Step 7
Substitute for in and simplify.
Tap for more steps...
Step 7.1
Substitute for .
Step 7.2
Multiply by .