Calculus Examples

Solve the Differential Equation (dy)/(dx)=y/x+2
Step 1
Let . Substitute for .
Step 2
Solve for .
Step 3
Use the product rule to find the derivative of with respect to .
Step 4
Substitute for .
Step 5
Solve the substituted differential equation.
Tap for more steps...
Step 5.1
Separate the variables.
Tap for more steps...
Step 5.1.1
Solve for .
Tap for more steps...
Step 5.1.1.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 5.1.1.1.1
Subtract from both sides of the equation.
Step 5.1.1.1.2
Combine the opposite terms in .
Tap for more steps...
Step 5.1.1.1.2.1
Subtract from .
Step 5.1.1.1.2.2
Add and .
Step 5.1.1.2
Divide each term in by and simplify.
Tap for more steps...
Step 5.1.1.2.1
Divide each term in by .
Step 5.1.1.2.2
Simplify the left side.
Tap for more steps...
Step 5.1.1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.1.1.2.2.1.1
Cancel the common factor.
Step 5.1.1.2.2.1.2
Divide by .
Step 5.1.2
Rewrite the equation.
Step 5.2
Integrate both sides.
Tap for more steps...
Step 5.2.1
Set up an integral on each side.
Step 5.2.2
Apply the constant rule.
Step 5.2.3
Integrate the right side.
Tap for more steps...
Step 5.2.3.1
Since is constant with respect to , move out of the integral.
Step 5.2.3.2
The integral of with respect to is .
Step 5.2.3.3
Simplify.
Step 5.2.4
Group the constant of integration on the right side as .
Step 6
Substitute for .
Step 7
Solve for .
Tap for more steps...
Step 7.1
Multiply both sides by .
Step 7.2
Simplify.
Tap for more steps...
Step 7.2.1
Simplify the left side.
Tap for more steps...
Step 7.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 7.2.1.1.1
Cancel the common factor.
Step 7.2.1.1.2
Rewrite the expression.
Step 7.2.2
Simplify the right side.
Tap for more steps...
Step 7.2.2.1
Simplify .
Tap for more steps...
Step 7.2.2.1.1
Simplify each term.
Tap for more steps...
Step 7.2.2.1.1.1
Simplify by moving inside the logarithm.
Step 7.2.2.1.1.2
Remove the absolute value in because exponentiations with even powers are always positive.
Step 7.2.2.1.2
Simplify by multiplying through.
Tap for more steps...
Step 7.2.2.1.2.1
Apply the distributive property.
Step 7.2.2.1.2.2
Simplify the expression.
Tap for more steps...
Step 7.2.2.1.2.2.1
Reorder factors in .
Step 7.2.2.1.2.2.2
Reorder and .