Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate with respect to .
Step 1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.4
Differentiate using the Power Rule which states that is where .
Step 1.5
Differentiate using the Power Rule which states that is where .
Step 1.6
Add and .
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Differentiate.
Step 2.4.1
Differentiate using the Power Rule which states that is where .
Step 2.4.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.3
Add and .
Step 3
Step 3.1
Substitute for and for .
Step 3.2
Since the two sides have been shown to be equivalent, the equation is an identity.
is an identity.
is an identity.
Step 4
Set equal to the integral of .
Step 5
Step 5.1
Split the single integral into multiple integrals.
Step 5.2
By the Power Rule, the integral of with respect to is .
Step 5.3
Apply the constant rule.
Step 5.4
Apply the constant rule.
Step 5.5
Simplify.
Step 6
Since the integral of will contain an integration constant, we can replace with .
Step 7
Set .
Step 8
Step 8.1
Differentiate with respect to .
Step 8.2
Differentiate.
Step 8.2.1
By the Sum Rule, the derivative of with respect to is .
Step 8.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 8.3
Evaluate .
Step 8.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.2
Differentiate using the Power Rule which states that is where .
Step 8.3.3
Move to the left of .
Step 8.4
Evaluate .
Step 8.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 8.4.2
Differentiate using the Power Rule which states that is where .
Step 8.4.3
Multiply by .
Step 8.5
Differentiate using the function rule which states that the derivative of is .
Step 8.6
Simplify.
Step 8.6.1
Add and .
Step 8.6.2
Reorder terms.
Step 9
Step 9.1
Move all terms not containing to the right side of the equation.
Step 9.1.1
Subtract from both sides of the equation.
Step 9.1.2
Subtract from both sides of the equation.
Step 9.1.3
Combine the opposite terms in .
Step 9.1.3.1
Subtract from .
Step 9.1.3.2
Add and .
Step 9.1.3.3
Subtract from .
Step 9.1.3.4
Add and .
Step 10
Step 10.1
Integrate both sides of .
Step 10.2
Evaluate .
Step 10.3
The integral of with respect to is .
Step 11
Substitute for in .
Step 12
Combine and .