Enter a problem...
Calculus Examples
Step 1
Let . Substitute for all occurrences of .
Step 2
Step 2.1
Differentiate using the chain rule, which states that is where and .
Step 2.1.1
To apply the Chain Rule, set as .
Step 2.1.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.1.3
Replace all occurrences of with .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
Rewrite as .
Step 3
Substitute for .
Step 4
Step 4.1
Add and .
Step 4.2
Add and .
Step 5
Step 5.1
Solve for .
Step 5.1.1
Multiply both sides by .
Step 5.1.2
Simplify.
Step 5.1.2.1
Simplify the left side.
Step 5.1.2.1.1
Cancel the common factor of .
Step 5.1.2.1.1.1
Cancel the common factor.
Step 5.1.2.1.1.2
Rewrite the expression.
Step 5.1.2.2
Simplify the right side.
Step 5.1.2.2.1
Multiply by by adding the exponents.
Step 5.1.2.2.1.1
Move .
Step 5.1.2.2.1.2
Multiply by .
Step 5.2
Multiply both sides by .
Step 5.3
Cancel the common factor of .
Step 5.3.1
Factor out of .
Step 5.3.2
Cancel the common factor.
Step 5.3.3
Rewrite the expression.
Step 5.4
Rewrite the equation.
Step 6
Step 6.1
Set up an integral on each side.
Step 6.2
Integrate the left side.
Step 6.2.1
Apply basic rules of exponents.
Step 6.2.1.1
Move out of the denominator by raising it to the power.
Step 6.2.1.2
Multiply the exponents in .
Step 6.2.1.2.1
Apply the power rule and multiply exponents, .
Step 6.2.1.2.2
Multiply by .
Step 6.2.2
By the Power Rule, the integral of with respect to is .
Step 6.2.3
Rewrite as .
Step 6.3
By the Power Rule, the integral of with respect to is .
Step 6.4
Group the constant of integration on the right side as .
Step 7
Step 7.1
Combine and .
Step 7.2
Find the LCD of the terms in the equation.
Step 7.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 7.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Step 7.2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 7.2.4
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 7.2.5
Since has no factors besides and .
is a prime number
Step 7.2.6
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 7.2.7
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 7.2.8
The factor for is itself.
occurs time.
Step 7.2.9
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.
Step 7.2.10
The LCM for is the numeric part multiplied by the variable part.
Step 7.3
Multiply each term in by to eliminate the fractions.
Step 7.3.1
Multiply each term in by .
Step 7.3.2
Simplify the left side.
Step 7.3.2.1
Cancel the common factor of .
Step 7.3.2.1.1
Move the leading negative in into the numerator.
Step 7.3.2.1.2
Factor out of .
Step 7.3.2.1.3
Cancel the common factor.
Step 7.3.2.1.4
Rewrite the expression.
Step 7.3.2.2
Multiply by .
Step 7.3.3
Simplify the right side.
Step 7.3.3.1
Simplify each term.
Step 7.3.3.1.1
Rewrite using the commutative property of multiplication.
Step 7.3.3.1.2
Cancel the common factor of .
Step 7.3.3.1.2.1
Cancel the common factor.
Step 7.3.3.1.2.2
Rewrite the expression.
Step 7.3.3.1.3
Rewrite using the commutative property of multiplication.
Step 7.4
Solve the equation.
Step 7.4.1
Rewrite the equation as .
Step 7.4.2
Factor out of .
Step 7.4.2.1
Factor out of .
Step 7.4.2.2
Factor out of .
Step 7.4.2.3
Factor out of .
Step 7.4.3
Divide each term in by and simplify.
Step 7.4.3.1
Divide each term in by .
Step 7.4.3.2
Simplify the left side.
Step 7.4.3.2.1
Cancel the common factor of .
Step 7.4.3.2.1.1
Cancel the common factor.
Step 7.4.3.2.1.2
Divide by .
Step 7.4.3.3
Simplify the right side.
Step 7.4.3.3.1
Move the negative in front of the fraction.
Step 8
Simplify the constant of integration.
Step 9
Replace all occurrences of with .
Step 10
Step 10.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 10.2
Expand the left side.
Step 10.2.1
Expand by moving outside the logarithm.
Step 10.2.2
The natural logarithm of is .
Step 10.2.3
Multiply by .
Step 10.3
Subtract from both sides of the equation.