Calculus Examples

Solve the Differential Equation (dy)/(dx)=(3y+x^2y)/(x-4xy)
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Factor out of .
Tap for more steps...
Step 1.1.1
Factor out of .
Step 1.1.2
Factor out of .
Step 1.1.3
Factor out of .
Step 1.1.4
Multiply by .
Step 1.2
Factor out of .
Tap for more steps...
Step 1.2.1
Raise to the power of .
Step 1.2.2
Factor out of .
Step 1.2.3
Factor out of .
Step 1.2.4
Factor out of .
Step 1.2.5
Multiply by .
Step 1.3
Regroup factors.
Step 1.4
Multiply both sides by .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Multiply by .
Step 1.5.2
Cancel the common factor of .
Tap for more steps...
Step 1.5.2.1
Factor out of .
Step 1.5.2.2
Cancel the common factor.
Step 1.5.2.3
Rewrite the expression.
Step 1.5.3
Cancel the common factor of .
Tap for more steps...
Step 1.5.3.1
Cancel the common factor.
Step 1.5.3.2
Rewrite the expression.
Step 1.6
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Split the fraction into multiple fractions.
Step 2.2.2
Split the single integral into multiple integrals.
Step 2.2.3
Cancel the common factor of .
Tap for more steps...
Step 2.2.3.1
Cancel the common factor.
Step 2.2.3.2
Divide by .
Step 2.2.4
The integral of with respect to is .
Step 2.2.5
Apply the constant rule.
Step 2.2.6
Simplify.
Step 2.2.7
Reorder terms.
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Split the fraction into multiple fractions.
Step 2.3.2
Split the single integral into multiple integrals.
Step 2.3.3
Cancel the common factor of and .
Tap for more steps...
Step 2.3.3.1
Factor out of .
Step 2.3.3.2
Cancel the common factors.
Tap for more steps...
Step 2.3.3.2.1
Raise to the power of .
Step 2.3.3.2.2
Factor out of .
Step 2.3.3.2.3
Cancel the common factor.
Step 2.3.3.2.4
Rewrite the expression.
Step 2.3.3.2.5
Divide by .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
The integral of with respect to is .
Step 2.3.6
By the Power Rule, the integral of with respect to is .
Step 2.3.7
Simplify.
Step 2.3.8
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .