Enter a problem...
Calculus Examples
3y2tdy+(y3+2t)dt=03y2tdy+(y3+2t)dt=0
Step 1
Step 1.1
Rewrite.
(y3+2t)dt+3y2tdy=0
(y3+2t)dt+3y2tdy=0
Step 2
Step 2.1
Differentiate M with respect to y.
∂M∂y=ddy[y3+2t]
Step 2.2
By the Sum Rule, the derivative of y3+2t with respect to y is ddy[y3]+ddy[2t].
∂M∂y=ddy[y3]+ddy[2t]
Step 2.3
Differentiate using the Power Rule which states that ddy[yn] is nyn-1 where n=3.
∂M∂y=3y2+ddy[2t]
Step 2.4
Since 2t is constant with respect to y, the derivative of 2t with respect to y is 0.
∂M∂y=3y2+0
Step 2.5
Add 3y2 and 0.
∂M∂y=3y2
∂M∂y=3y2
Step 3
Step 3.1
Differentiate N with respect to x.
∂N∂x=ddx[3y2t]
Step 3.2
Since 3y2t is constant with respect to x, the derivative of 3y2t with respect to x is 0.
∂N∂x=0
∂N∂x=0
Step 4
Step 4.1
Substitute 3y2 for ∂M∂y and 0 for ∂N∂x.
3y2=0
Step 4.2
Since the left side does not equal the right side, the equation is not an identity.
3y2=0 is not an identity.
3y2=0 is not an identity.
Step 5
Step 5.1
Substitute 3y2 for ∂M∂y.
3y2-∂N∂xN
Step 5.2
Substitute 0 for ∂N∂x.
3y2+0N
Step 5.3
Substitute 3y2t for N.
Step 5.3.1
Substitute 3y2t for N.
3y2+03y2t
Step 5.3.2
Cancel the common factor of 3y2+0 and 3.
Step 5.3.2.1
Factor 3 out of 3y2.
3(y2)+03y2t
Step 5.3.2.2
Factor 3 out of 0.
3(y2)+3⋅03y2t
Step 5.3.2.3
Factor 3 out of 3(y2)+3(0).
3(y2+0)3y2t
Step 5.3.2.4
Cancel the common factors.
Step 5.3.2.4.1
Factor 3 out of 3y2t.
3(y2+0)3(y2t)
Step 5.3.2.4.2
Cancel the common factor.
3(y2+0)3(y2t)
Step 5.3.2.4.3
Rewrite the expression.
y2+0y2t
y2+0y2t
y2+0y2t
Step 5.3.3
Add y2 and 0.
y2y2t
Step 5.3.4
Cancel the common factor of y2.
Step 5.3.4.1
Cancel the common factor.
y2y2t
Step 5.3.4.2
Rewrite the expression.
1t
1t
1t
Step 5.4
Find the integration factor μ(x,y)=e∫∂M∂y-∂N∂xNdx.
μ(x,y)=e∫1tdx
μ(x,y)=e∫1tdx
Step 6
Step 6.1
Apply the constant rule.
μ(x,y)=e1tx+C
Step 6.2
Simplify the answer.
Step 6.2.1
Combine 1t and x.
μ(x,y)=ext+C
Step 6.2.2
Simplify.
μ(x,y)=ext+C
μ(x,y)=ext+C
μ(x,y)=ext+C
Step 7
Step 7.1
Multiply y3+2t by ext.
(y3+2t)extdt+3y2tdy=0
Step 7.2
Apply the distributive property.
(y3ext+2text)dt+3y2tdy=0
Step 7.3
Multiply 3y2t by ext.
(y3ext+2text)dt+3y2textdy=0
(y3ext+2text)dt+3y2textdy=0
Step 8
Set f(x,y) equal to the integral of N(x,y).
f(x,y)=∫3y2textdy
Step 9
Step 9.1
Since 3text is constant with respect to y, move 3text out of the integral.
f(x,y)=3text∫y2dy
Step 9.2
By the Power Rule, the integral of y2 with respect to y is 13y3.
f(x,y)=3text(13y3+C)
Step 9.3
Simplify the answer.
Step 9.3.1
Rewrite 3text(13y3+C) as 3text13y3+C.
f(x,y)=3text13y3+C
Step 9.3.2
Simplify.
Step 9.3.2.1
Combine 3 and 13.
f(x,y)=text33y3+C
Step 9.3.2.2
Combine 33 and t.
f(x,y)=3t3exty3+C
Step 9.3.2.3
Combine 3t3 and ext.
f(x,y)=3text3y3+C
Step 9.3.2.4
Cancel the common factor of 3.
Step 9.3.2.4.1
Cancel the common factor.
f(x,y)=3text3y3+C
Step 9.3.2.4.2
Divide text by 1.
f(x,y)=texty3+C
f(x,y)=texty3+C
f(x,y)=texty3+C
f(x,y)=texty3+C
f(x,y)=texty3+C
Step 10
Since the integral of g(x) will contain an integration constant, we can replace C with g(x).
f(x,y)=texty3+g(x)
Step 11
Set ∂f∂x=M(x,y).
∂f∂x=y3ext+2text
Step 12
Step 12.1
Differentiate f with respect to x.
ddx[texty3+g(x)]=y3ext+2text
Step 12.2
By the Sum Rule, the derivative of texty3+g(x) with respect to x is ddx[texty3]+ddx[g(x)].
ddx[texty3]+ddx[g(x)]=y3ext+2text
Step 12.3
Evaluate ddx[texty3].
Step 12.3.1
Since ty3 is constant with respect to x, the derivative of texty3 with respect to x is ty3ddx[ext].
ty3ddx[ext]+ddx[g(x)]=y3ext+2text
Step 12.3.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=xt.
Step 12.3.2.1
To apply the Chain Rule, set u as xt.
ty3(ddu[eu]ddx[xt])+ddx[g(x)]=y3ext+2text
Step 12.3.2.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
ty3(euddx[xt])+ddx[g(x)]=y3ext+2text
Step 12.3.2.3
Replace all occurrences of u with xt.
ty3(extddx[xt])+ddx[g(x)]=y3ext+2text
ty3(extddx[xt])+ddx[g(x)]=y3ext+2text
Step 12.3.3
Since 1t is constant with respect to x, the derivative of xt with respect to x is 1tddx[x].
ty3(ext(1tddx[x]))+ddx[g(x)]=y3ext+2text
Step 12.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
ty3(ext(1t⋅1))+ddx[g(x)]=y3ext+2text
Step 12.3.5
Multiply 1t by 1.
ty3(ext1t)+ddx[g(x)]=y3ext+2text
Step 12.3.6
Combine ext and 1t.
ty3extt+ddx[g(x)]=y3ext+2text
Step 12.3.7
Combine t and extt.
y3textt+ddx[g(x)]=y3ext+2text
Step 12.3.8
Combine y3 and textt.
y3(text)t+ddx[g(x)]=y3ext+2text
Step 12.3.9
Cancel the common factor of t.
Step 12.3.9.1
Cancel the common factor.
y3textt+ddx[g(x)]=y3ext+2text
Step 12.3.9.2
Divide y3ext by 1.
y3ext+ddx[g(x)]=y3ext+2text
y3ext+ddx[g(x)]=y3ext+2text
y3ext+ddx[g(x)]=y3ext+2text
Step 12.4
Differentiate using the function rule which states that the derivative of g(x) is dgdx.
y3ext+dgdx=y3ext+2text
Step 12.5
Simplify.
Step 12.5.1
Reorder terms.
dgdx+exty3=y3ext+2text
Step 12.5.2
Reorder factors in dgdx+exty3.
dgdx+y3ext=y3ext+2text
dgdx+y3ext=y3ext+2text
dgdx+y3ext=y3ext+2text
Step 13
Step 13.1
Move all terms not containing dgdx to the right side of the equation.
Step 13.1.1
Subtract y3ext from both sides of the equation.
dgdx=y3ext+2text-y3ext
Step 13.1.2
Combine the opposite terms in y3ext+2text-y3ext.
Step 13.1.2.1
Subtract y3ext from y3ext.
dgdx=2text+0
Step 13.1.2.2
Add 2text and 0.
dgdx=2text
dgdx=2text
dgdx=2text
dgdx=2text
Step 14
Step 14.1
Integrate both sides of dgdx=2text.
∫dgdxdx=∫2textdx
Step 14.2
Evaluate ∫dgdxdx.
g(x)=∫2textdx
Step 14.3
Since 2t is constant with respect to x, move 2t out of the integral.
g(x)=2t∫extdx
Step 14.4
Let u=xt. Then du=1tdx, so tdu=dx. Rewrite using u and du.
Step 14.4.1
Let u=xt. Find dudx.
Step 14.4.1.1
Differentiate xt.
ddx[xt]
Step 14.4.1.2
Since 1t is constant with respect to x, the derivative of xt with respect to x is 1tddx[x].
1tddx[x]
Step 14.4.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1t⋅1
Step 14.4.1.4
Multiply 1t by 1.
1t
1t
Step 14.4.2
Rewrite the problem using u and du.
g(x)=2t∫eu11tdu
g(x)=2t∫eu11tdu
Step 14.5
Simplify.
Step 14.5.1
Multiply by the reciprocal of the fraction to divide by 1t.
g(x)=2t∫eu(1t)du
Step 14.5.2
Multiply t by 1.
g(x)=2t∫eutdu
g(x)=2t∫eutdu
Step 14.6
Since t is constant with respect to u, move t out of the integral.
g(x)=2t(t∫eudu)
Step 14.7
Simplify.
Step 14.7.1
Raise t to the power of 1.
g(x)=2(t1t)∫eudu
Step 14.7.2
Raise t to the power of 1.
g(x)=2(t1t1)∫eudu
Step 14.7.3
Use the power rule aman=am+n to combine exponents.
g(x)=2t1+1∫eudu
Step 14.7.4
Add 1 and 1.
g(x)=2t2∫eudu
g(x)=2t2∫eudu
Step 14.8
The integral of eu with respect to u is eu.
g(x)=2t2(eu+C)
Step 14.9
Simplify.
g(x)=2t2eu+C
Step 14.10
Replace all occurrences of u with xt.
g(x)=2t2ext+C
g(x)=2t2ext+C
Step 15
Substitute for g(x) in f(x,y)=texty3+g(x).
f(x,y)=texty3+2t2ext+C
Step 16
Reorder factors in f(x,y)=texty3+2t2ext+C.
f(x,y)=ty3ext+2t2ext+C