Enter a problem...
Calculus Examples
dydx=x2y21-x
Step 1
Step 1.1
Regroup factors.
dydx=x21-xy2
Step 1.2
Multiply both sides by 1y2.
1y2dydx=1y2(x21-xy2)
Step 1.3
Cancel the common factor of y2.
Step 1.3.1
Factor y2 out of x21-xy2.
1y2dydx=1y2(y2x21-x)
Step 1.3.2
Cancel the common factor.
1y2dydx=1y2(y2x21-x)
Step 1.3.3
Rewrite the expression.
1y2dydx=x21-x
1y2dydx=x21-x
Step 1.4
Rewrite the equation.
1y2dy=x21-xdx
1y2dy=x21-xdx
Step 2
Step 2.1
Set up an integral on each side.
∫1y2dy=∫x21-xdx
Step 2.2
Integrate the left side.
Step 2.2.1
Apply basic rules of exponents.
Step 2.2.1.1
Move y2 out of the denominator by raising it to the -1 power.
∫(y2)-1dy=∫x21-xdx
Step 2.2.1.2
Multiply the exponents in (y2)-1.
Step 2.2.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
∫y2⋅-1dy=∫x21-xdx
Step 2.2.1.2.2
Multiply 2 by -1.
∫y-2dy=∫x21-xdx
∫y-2dy=∫x21-xdx
∫y-2dy=∫x21-xdx
Step 2.2.2
By the Power Rule, the integral of y-2 with respect to y is -y-1.
-y-1+C1=∫x21-xdx
Step 2.2.3
Rewrite -y-1+C1 as -1y+C1.
-1y+C1=∫x21-xdx
-1y+C1=∫x21-xdx
Step 2.3
Integrate the right side.
Step 2.3.1
Reorder 1 and -x.
-1y+C1=∫x2-x+1dx
Step 2.3.2
Divide x2 by -x+1.
Step 2.3.2.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
- | x | + | 1 | x2 | + | 0x | + | 0 |
Step 2.3.2.2
Divide the highest order term in the dividend x2 by the highest order term in divisor -x.
- | x | ||||||||
- | x | + | 1 | x2 | + | 0x | + | 0 |
Step 2.3.2.3
Multiply the new quotient term by the divisor.
- | x | ||||||||
- | x | + | 1 | x2 | + | 0x | + | 0 | |
+ | x2 | - | x |
Step 2.3.2.4
The expression needs to be subtracted from the dividend, so change all the signs in x2-x
- | x | ||||||||
- | x | + | 1 | x2 | + | 0x | + | 0 | |
- | x2 | + | x |
Step 2.3.2.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | x | ||||||||
- | x | + | 1 | x2 | + | 0x | + | 0 | |
- | x2 | + | x | ||||||
+ | x |
Step 2.3.2.6
Pull the next terms from the original dividend down into the current dividend.
- | x | ||||||||
- | x | + | 1 | x2 | + | 0x | + | 0 | |
- | x2 | + | x | ||||||
+ | x | + | 0 |
Step 2.3.2.7
Divide the highest order term in the dividend x by the highest order term in divisor -x.
- | x | - | 1 | ||||||
- | x | + | 1 | x2 | + | 0x | + | 0 | |
- | x2 | + | x | ||||||
+ | x | + | 0 |
Step 2.3.2.8
Multiply the new quotient term by the divisor.
- | x | - | 1 | ||||||
- | x | + | 1 | x2 | + | 0x | + | 0 | |
- | x2 | + | x | ||||||
+ | x | + | 0 | ||||||
+ | x | - | 1 |
Step 2.3.2.9
The expression needs to be subtracted from the dividend, so change all the signs in x-1
- | x | - | 1 | ||||||
- | x | + | 1 | x2 | + | 0x | + | 0 | |
- | x2 | + | x | ||||||
+ | x | + | 0 | ||||||
- | x | + | 1 |
Step 2.3.2.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | x | - | 1 | ||||||
- | x | + | 1 | x2 | + | 0x | + | 0 | |
- | x2 | + | x | ||||||
+ | x | + | 0 | ||||||
- | x | + | 1 | ||||||
+ | 1 |
Step 2.3.2.11
The final answer is the quotient plus the remainder over the divisor.
-1y+C1=∫-x-1+1-x+1dx
-1y+C1=∫-x-1+1-x+1dx
Step 2.3.3
Split the single integral into multiple integrals.
-1y+C1=∫-xdx+∫-1dx+∫1-x+1dx
Step 2.3.4
Since -1 is constant with respect to x, move -1 out of the integral.
-1y+C1=-∫xdx+∫-1dx+∫1-x+1dx
Step 2.3.5
By the Power Rule, the integral of x with respect to x is 12x2.
-1y+C1=-(12x2+C2)+∫-1dx+∫1-x+1dx
Step 2.3.6
Apply the constant rule.
-1y+C1=-(12x2+C2)-x+C3+∫1-x+1dx
Step 2.3.7
Combine 12 and x2.
-1y+C1=-(x22+C2)-x+C3+∫1-x+1dx
Step 2.3.8
Let u=-x+1. Then du=-dx, so -du=dx. Rewrite using u and du.
Step 2.3.8.1
Let u=-x+1. Find dudx.
Step 2.3.8.1.1
Rewrite.
-11
Step 2.3.8.1.2
Divide -1 by 1.
-1
-1
Step 2.3.8.2
Rewrite the problem using u and du.
-1y+C1=-(x22+C2)-x+C3+∫-1udu
-1y+C1=-(x22+C2)-x+C3+∫-1udu
Step 2.3.9
Move the negative in front of the fraction.
-1y+C1=-(x22+C2)-x+C3+∫-1udu
Step 2.3.10
Since -1 is constant with respect to u, move -1 out of the integral.
-1y+C1=-(x22+C2)-x+C3-∫1udu
Step 2.3.11
The integral of 1u with respect to u is ln(|u|).
-1y+C1=-(x22+C2)-x+C3-(ln(|u|)+C4)
Step 2.3.12
Simplify.
-1y+C1=-12x2-x-ln(|u|)+C5
Step 2.3.13
Replace all occurrences of u with -x+1.
-1y+C1=-12x2-x-ln(|-x+1|)+C5
-1y+C1=-12x2-x-ln(|-x+1|)+C5
Step 2.4
Group the constant of integration on the right side as C.
-1y=-12x2-x-ln(|-x+1|)+C
-1y=-12x2-x-ln(|-x+1|)+C
Step 3
Step 3.1
Simplify -12x2-x-ln(|-x+1|)+C.
Step 3.1.1
Combine x2 and 12.
-1y=-x22-x-ln(|-x+1|)+C
Step 3.1.2
To write -ln(|-x+1|) as a fraction with a common denominator, multiply by 22.
-1y=-x-x22-ln(|-x+1|)⋅22+C
Step 3.1.3
Simplify terms.
Step 3.1.3.1
Combine -ln(|-x+1|) and 22.
-1y=-x-x22+-ln(|-x+1|)⋅22+C
Step 3.1.3.2
Combine the numerators over the common denominator.
-1y=-x+-x2-ln(|-x+1|)⋅22+C
-1y=-x+-x2-ln(|-x+1|)⋅22+C
Step 3.1.4
Simplify the numerator.
Step 3.1.4.1
Multiply -ln(|-x+1|)⋅2.
Step 3.1.4.1.1
Multiply 2 by -1.
-1y=-x+-x2-2ln(|-x+1|)2+C
Step 3.1.4.1.2
Simplify -2ln(|-x+1|) by moving 2 inside the logarithm.
-1y=-x+-x2-ln(|-x+1|2)2+C
-1y=-x+-x2-ln(|-x+1|2)2+C
Step 3.1.4.2
Remove the absolute value in |-x+1|2 because exponentiations with even powers are always positive.
-1y=-x+-x2-ln((-x+1)2)2+C
-1y=-x+-x2-ln((-x+1)2)2+C
-1y=-x+-x2-ln((-x+1)2)2+C
Step 3.2
Find the LCD of the terms in the equation.
Step 3.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
y,1,2,1
Step 3.2.2
Since y,1,2,1 contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part 1,1,2,1 then find LCM for the variable part y1.
Step 3.2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 3.2.4
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 3.2.5
Since 2 has no factors besides 1 and 2.
2 is a prime number
Step 3.2.6
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 3.2.7
The LCM of 1,1,2,1 is the result of multiplying all prime factors the greatest number of times they occur in either number.
2
Step 3.2.8
The factor for y1 is y itself.
y1=y
y occurs 1 time.
Step 3.2.9
The LCM of y1 is the result of multiplying all prime factors the greatest number of times they occur in either term.
y
Step 3.2.10
The LCM for y,1,2,1 is the numeric part 2 multiplied by the variable part.
2y
2y
Step 3.3
Multiply each term in -1y=-x+-x2-ln((-x+1)2)2+C by 2y to eliminate the fractions.
Step 3.3.1
Multiply each term in -1y=-x+-x2-ln((-x+1)2)2+C by 2y.
-1y(2y)=-x(2y)+-x2-ln((-x+1)2)2(2y)+C(2y)
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of y.
Step 3.3.2.1.1
Move the leading negative in -1y into the numerator.
-1y(2y)=-x(2y)+-x2-ln((-x+1)2)2(2y)+C(2y)
Step 3.3.2.1.2
Factor y out of 2y.
-1y(y⋅2)=-x(2y)+-x2-ln((-x+1)2)2(2y)+C(2y)
Step 3.3.2.1.3
Cancel the common factor.
-1y(y⋅2)=-x(2y)+-x2-ln((-x+1)2)2(2y)+C(2y)
Step 3.3.2.1.4
Rewrite the expression.
-1⋅2=-x(2y)+-x2-ln((-x+1)2)2(2y)+C(2y)
-1⋅2=-x(2y)+-x2-ln((-x+1)2)2(2y)+C(2y)
Step 3.3.2.2
Multiply -1 by 2.
-2=-x(2y)+-x2-ln((-x+1)2)2(2y)+C(2y)
-2=-x(2y)+-x2-ln((-x+1)2)2(2y)+C(2y)
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Simplify each term.
Step 3.3.3.1.1
Rewrite using the commutative property of multiplication.
-2=-1⋅2xy+-x2-ln((-x+1)2)2(2y)+C(2y)
Step 3.3.3.1.2
Multiply -1 by 2.
-2=-2xy+-x2-ln((-x+1)2)2(2y)+C(2y)
Step 3.3.3.1.3
Rewrite using the commutative property of multiplication.
-2=-2xy+2-x2-ln((-x+1)2)2y+C(2y)
Step 3.3.3.1.4
Cancel the common factor of 2.
Step 3.3.3.1.4.1
Cancel the common factor.
-2=-2xy+2-x2-ln((-x+1)2)2y+C(2y)
Step 3.3.3.1.4.2
Rewrite the expression.
-2=-2xy+(-x2-ln((-x+1)2))y+C(2y)
-2=-2xy+(-x2-ln((-x+1)2))y+C(2y)
Step 3.3.3.1.5
Apply the distributive property.
-2=-2xy-x2y-ln((-x+1)2)y+C(2y)
Step 3.3.3.1.6
Rewrite using the commutative property of multiplication.
-2=-2xy-x2y-ln((-x+1)2)y+2Cy
-2=-2xy-x2y-ln((-x+1)2)y+2Cy
Step 3.3.3.2
Reorder factors in -2xy-x2y-ln((-x+1)2)y+2Cy.
-2=-2xy-x2y-yln((-x+1)2)+2Cy
-2=-2xy-x2y-yln((-x+1)2)+2Cy
-2=-2xy-x2y-yln((-x+1)2)+2Cy
Step 3.4
Solve the equation.
Step 3.4.1
Rewrite the equation as -2xy-x2y-yln((-x+1)2)+2Cy=-2.
-2xy-x2y-yln((-x+1)2)+2Cy=-2
Step 3.4.2
Factor y out of -2xy-x2y-yln((-x+1)2)+2Cy.
Step 3.4.2.1
Factor y out of -2xy.
y(-2x)-x2y-yln((-x+1)2)+2Cy=-2
Step 3.4.2.2
Factor y out of -x2y.
y(-2x)+y(-x2)-yln((-x+1)2)+2Cy=-2
Step 3.4.2.3
Factor y out of -yln((-x+1)2).
y(-2x)+y(-x2)+y(-1ln((-x+1)2))+2Cy=-2
Step 3.4.2.4
Factor y out of 2Cy.
y(-2x)+y(-x2)+y(-1ln((-x+1)2))+y(2C)=-2
Step 3.4.2.5
Factor y out of y(-2x)+y(-x2).
y(-2x-x2)+y(-1ln((-x+1)2))+y(2C)=-2
Step 3.4.2.6
Factor y out of y(-2x-x2)+y(-1ln((-x+1)2)).
y(-2x-x2-1ln((-x+1)2))+y(2C)=-2
Step 3.4.2.7
Factor y out of y(-2x-x2-1ln((-x+1)2))+y(2C).
y(-2x-x2-1ln((-x+1)2)+2C)=-2
y(-2x-x2-1ln((-x+1)2)+2C)=-2
Step 3.4.3
Rewrite -1ln((-x+1)2) as -ln((-x+1)2).
y(-2x-x2-ln((-x+1)2)+2C)=-2
Step 3.4.4
Divide each term in y(-2x-x2-ln((-x+1)2)+2C)=-2 by -2x-x2-ln((-x+1)2)+2C and simplify.
Step 3.4.4.1
Divide each term in y(-2x-x2-ln((-x+1)2)+2C)=-2 by -2x-x2-ln((-x+1)2)+2C.
y(-2x-x2-ln((-x+1)2)+2C)-2x-x2-ln((-x+1)2)+2C=-2-2x-x2-ln((-x+1)2)+2C
Step 3.4.4.2
Simplify the left side.
Step 3.4.4.2.1
Cancel the common factor of -2x-x2-ln((-x+1)2)+2C.
Step 3.4.4.2.1.1
Cancel the common factor.
y(-2x-x2-ln((-x+1)2)+2C)-2x-x2-ln((-x+1)2)+2C=-2-2x-x2-ln((-x+1)2)+2C
Step 3.4.4.2.1.2
Divide y by 1.
y=-2-2x-x2-ln((-x+1)2)+2C
y=-2-2x-x2-ln((-x+1)2)+2C
y=-2-2x-x2-ln((-x+1)2)+2C
Step 3.4.4.3
Simplify the right side.
Step 3.4.4.3.1
Move the negative in front of the fraction.
y=-2-2x-x2-ln((-x+1)2)+2C
Step 3.4.4.3.2
Factor -1 out of -2x.
y=-2-(2x)-x2-ln((-x+1)2)+2C
Step 3.4.4.3.3
Factor -1 out of -x2.
y=-2-(2x)-(x2)-ln((-x+1)2)+2C
Step 3.4.4.3.4
Factor -1 out of -(2x)-(x2).
y=-2-(2x+x2)-ln((-x+1)2)+2C
Step 3.4.4.3.5
Factor -1 out of -ln((-x+1)2).
y=-2-(2x+x2)-(ln((-x+1)2))+2C
Step 3.4.4.3.6
Factor -1 out of -(2x+x2)-(ln((-x+1)2)).
y=-2-(2x+x2+ln((-x+1)2))+2C
Step 3.4.4.3.7
Factor -1 out of 2C.
y=-2-(2x+x2+ln((-x+1)2))-(-2C)
Step 3.4.4.3.8
Factor -1 out of -(2x+x2+ln((-x+1)2))-(-2C).
y=-2-(2x+x2+ln((-x+1)2)-2C)
Step 3.4.4.3.9
Simplify the expression.
Step 3.4.4.3.9.1
Rewrite -(2x+x2+ln((-x+1)2)-2C) as -1(2x+x2+ln((-x+1)2)-2C).
y=-2-1(2x+x2+ln((-x+1)2)-2C)
Step 3.4.4.3.9.2
Move the negative in front of the fraction.
y=--22x+x2+ln((-x+1)2)-2C
Step 3.4.4.3.9.3
Multiply -1 by -1.
y=122x+x2+ln((-x+1)2)-2C
Step 3.4.4.3.9.4
Multiply 22x+x2+ln((-x+1)2)-2C by 1.
y=22x+x2+ln((-x+1)2)-2C
y=22x+x2+ln((-x+1)2)-2C
y=22x+x2+ln((-x+1)2)-2C
y=22x+x2+ln((-x+1)2)-2C
y=22x+x2+ln((-x+1)2)-2C
y=22x+x2+ln((-x+1)2)-2C
Step 4
Simplify the constant of integration.
y=22x+x2+ln((-x+1)2)+C