Calculus Examples

Solve the Differential Equation (dF)/(dx)=-5x^2-5e^x , F(0)=-9
,
Step 1
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
The integral of with respect to is .
Step 2.3.6
Simplify.
Tap for more steps...
Step 2.3.6.1
Simplify.
Step 2.3.6.2
Simplify.
Tap for more steps...
Step 2.3.6.2.1
Combine and .
Step 2.3.6.2.2
Move the negative in front of the fraction.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Use the initial condition to find the value of by substituting for and for in .
Step 4
Solve for .
Tap for more steps...
Step 4.1
Rewrite the equation as .
Step 4.2
Simplify .
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Raising to any positive power yields .
Step 4.2.1.2
Multiply .
Tap for more steps...
Step 4.2.1.2.1
Multiply by .
Step 4.2.1.2.2
Multiply by .
Step 4.2.1.3
Anything raised to is .
Step 4.2.1.4
Multiply by .
Step 4.2.2
Subtract from .
Step 4.3
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 4.3.1
Add to both sides of the equation.
Step 4.3.2
Add and .
Step 5
Substitute for in and simplify.
Tap for more steps...
Step 5.1
Substitute for .
Step 5.2
Simplify each term.
Tap for more steps...
Step 5.2.1
Combine and .
Step 5.2.2
Move to the left of .