Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Step 1.2.1
Cancel the common factor of .
Step 1.2.1.1
Factor out of .
Step 1.2.1.2
Cancel the common factor.
Step 1.2.1.3
Rewrite the expression.
Step 1.2.2
Rewrite the expression using the negative exponent rule .
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Move to the numerator using the negative exponent rule .
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Apply basic rules of exponents.
Step 2.3.1.1
Move out of the denominator by raising it to the power.
Step 2.3.1.2
Multiply the exponents in .
Step 2.3.1.2.1
Apply the power rule and multiply exponents, .
Step 2.3.1.2.2
Multiply by .
Step 2.3.2
By the Power Rule, the integral of with respect to is .
Step 2.3.3
Rewrite as .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Apply the distributive property.
Step 3.2.2.1.2
Multiply .
Step 3.2.2.1.2.1
Multiply by .
Step 3.2.2.1.2.2
Combine and .
Step 3.2.2.1.3
Move the negative in front of the fraction.
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Step 3.4.1
Factor out of .
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Factor out of .
Step 3.4.1.3
Factor out of .
Step 3.4.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.3
Combine the numerators over the common denominator.
Step 3.4.4
Combine and .
Step 3.4.5
Rewrite as .
Step 3.4.6
Multiply by .
Step 3.4.7
Combine and simplify the denominator.
Step 3.4.7.1
Multiply by .
Step 3.4.7.2
Raise to the power of .
Step 3.4.7.3
Use the power rule to combine exponents.
Step 3.4.7.4
Add and .
Step 3.4.7.5
Rewrite as .
Step 3.4.7.5.1
Use to rewrite as .
Step 3.4.7.5.2
Apply the power rule and multiply exponents, .
Step 3.4.7.5.3
Combine and .
Step 3.4.7.5.4
Cancel the common factor of .
Step 3.4.7.5.4.1
Cancel the common factor.
Step 3.4.7.5.4.2
Rewrite the expression.
Step 3.4.7.5.5
Simplify.
Step 3.4.8
Rewrite as .
Step 3.4.9
Combine using the product rule for radicals.
Step 3.4.10
Reorder factors in .