Enter a problem...
Calculus Examples
Step 1
Subtract from both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Step 3.1
Rewrite using the commutative property of multiplication.
Step 3.2
Cancel the common factor of .
Step 3.2.1
Move the leading negative in into the numerator.
Step 3.2.2
Factor out of .
Step 3.2.3
Cancel the common factor.
Step 3.2.4
Rewrite the expression.
Step 3.3
Combine and .
Step 3.4
Move the negative in front of the fraction.
Step 3.5
Rewrite using the commutative property of multiplication.
Step 3.6
Cancel the common factor of .
Step 3.6.1
Move the leading negative in into the numerator.
Step 3.6.2
Factor out of .
Step 3.6.3
Cancel the common factor.
Step 3.6.4
Rewrite the expression.
Step 3.7
Move the negative in front of the fraction.
Step 4
Step 4.1
Set up an integral on each side.
Step 4.2
Integrate the left side.
Step 4.2.1
Since is constant with respect to , move out of the integral.
Step 4.2.2
Let . Then , so . Rewrite using and .
Step 4.2.2.1
Let . Find .
Step 4.2.2.1.1
Differentiate .
Step 4.2.2.1.2
By the Sum Rule, the derivative of with respect to is .
Step 4.2.2.1.3
Differentiate using the Power Rule which states that is where .
Step 4.2.2.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.2.1.5
Add and .
Step 4.2.2.2
Rewrite the problem using and .
Step 4.2.3
Simplify.
Step 4.2.3.1
Multiply by .
Step 4.2.3.2
Move to the left of .
Step 4.2.4
Since is constant with respect to , move out of the integral.
Step 4.2.5
The integral of with respect to is .
Step 4.2.6
Simplify.
Step 4.2.7
Replace all occurrences of with .
Step 4.3
Integrate the right side.
Step 4.3.1
Since is constant with respect to , move out of the integral.
Step 4.3.2
The integral of with respect to is .
Step 4.3.3
Simplify.
Step 4.4
Group the constant of integration on the right side as .
Step 5
Step 5.1
Multiply both sides of the equation by .
Step 5.2
Simplify both sides of the equation.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Simplify .
Step 5.2.1.1.1
Combine and .
Step 5.2.1.1.2
Cancel the common factor of .
Step 5.2.1.1.2.1
Move the leading negative in into the numerator.
Step 5.2.1.1.2.2
Factor out of .
Step 5.2.1.1.2.3
Cancel the common factor.
Step 5.2.1.1.2.4
Rewrite the expression.
Step 5.2.1.1.3
Multiply.
Step 5.2.1.1.3.1
Multiply by .
Step 5.2.1.1.3.2
Multiply by .
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Simplify .
Step 5.2.2.1.1
Apply the distributive property.
Step 5.2.2.1.2
Multiply by .
Step 5.3
Move all the terms containing a logarithm to the left side of the equation.
Step 5.4
Simplify the left side.
Step 5.4.1
Simplify .
Step 5.4.1.1
Simplify each term.
Step 5.4.1.1.1
Simplify by moving inside the logarithm.
Step 5.4.1.1.2
Remove the absolute value in because exponentiations with even powers are always positive.
Step 5.4.1.2
Use the quotient property of logarithms, .
Step 5.5
To solve for , rewrite the equation using properties of logarithms.
Step 5.6
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 5.7
Solve for .
Step 5.7.1
Rewrite the equation as .
Step 5.7.2
Multiply both sides by .
Step 5.7.3
Simplify.
Step 5.7.3.1
Simplify the left side.
Step 5.7.3.1.1
Cancel the common factor of .
Step 5.7.3.1.1.1
Cancel the common factor.
Step 5.7.3.1.1.2
Rewrite the expression.
Step 5.7.3.2
Simplify the right side.
Step 5.7.3.2.1
Reorder factors in .
Step 5.7.4
Solve for .
Step 5.7.4.1
Remove the absolute value term. This creates a on the right side of the equation because .
Step 5.7.4.2
Subtract from both sides of the equation.
Step 5.7.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 6
Step 6.1
Simplify the constant of integration.
Step 6.2
Combine constants with the plus or minus.