Enter a problem...
Calculus Examples
Step 1
Step 1.1
Regroup factors.
Step 1.2
Multiply both sides by .
Step 1.3
Simplify.
Step 1.3.1
Multiply by .
Step 1.3.2
Cancel the common factor of .
Step 1.3.2.1
Factor out of .
Step 1.3.2.2
Cancel the common factor.
Step 1.3.2.3
Rewrite the expression.
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Let . Then , so . Rewrite using and .
Step 2.3.2.1
Let . Find .
Step 2.3.2.1.1
Differentiate .
Step 2.3.2.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.2.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2.1.4
Differentiate using the Power Rule which states that is where .
Step 2.3.2.1.5
Add and .
Step 2.3.2.2
Rewrite the problem using and .
Step 2.3.3
Simplify.
Step 2.3.3.1
Multiply by .
Step 2.3.3.2
Move to the left of .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
Simplify.
Step 2.3.5.1
Combine and .
Step 2.3.5.2
Cancel the common factor of .
Step 2.3.5.2.1
Cancel the common factor.
Step 2.3.5.2.2
Rewrite the expression.
Step 2.3.5.3
Multiply by .
Step 2.3.6
The integral of with respect to is .
Step 2.3.7
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Apply the distributive property.
Step 3.3
Simplify by moving inside the logarithm.
Step 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.5
Remove the absolute value in because exponentiations with even powers are always positive.
Step 3.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.6.1
First, use the positive value of the to find the first solution.
Step 3.6.2
Next, use the negative value of the to find the second solution.
Step 3.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Simplify the constant of integration.