Calculus Examples

Solve the Differential Equation (dy)/(dx)=(1+xe^x)/(y+ye^(y^2))
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Factor out of .
Tap for more steps...
Step 1.2.1.1
Raise to the power of .
Step 1.2.1.2
Factor out of .
Step 1.2.1.3
Factor out of .
Step 1.2.1.4
Factor out of .
Step 1.2.2
Multiply by .
Step 1.2.3
Factor out of .
Tap for more steps...
Step 1.2.3.1
Raise to the power of .
Step 1.2.3.2
Factor out of .
Step 1.2.3.3
Factor out of .
Step 1.2.3.4
Factor out of .
Step 1.2.4
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.1
Cancel the common factor.
Step 1.2.4.2
Rewrite the expression.
Step 1.2.5
Cancel the common factor of .
Tap for more steps...
Step 1.2.5.1
Cancel the common factor.
Step 1.2.5.2
Divide by .
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Split the single integral into multiple integrals.
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.2.3
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.2.3.1
Let . Find .
Tap for more steps...
Step 2.2.3.1.1
Differentiate .
Step 2.2.3.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3.2
Rewrite the problem using and .
Step 2.2.4
Combine and .
Step 2.2.5
Since is constant with respect to , move out of the integral.
Step 2.2.6
The integral of with respect to is .
Step 2.2.7
Simplify.
Step 2.2.8
Replace all occurrences of with .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Apply the constant rule.
Step 2.3.3
Integrate by parts using the formula , where and .
Step 2.3.4
The integral of with respect to is .
Step 2.3.5
Simplify.
Step 2.3.6
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .