Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Factor out of .
Step 1.2.2
Cancel the common factor.
Step 1.2.3
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Apply basic rules of exponents.
Step 2.2.1.1
Use to rewrite as .
Step 2.2.1.2
Move out of the denominator by raising it to the power.
Step 2.2.1.3
Multiply the exponents in .
Step 2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 2.2.1.3.2
Combine and .
Step 2.2.1.3.3
Move the negative in front of the fraction.
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Apply the constant rule.
Step 2.3.3
Since is constant with respect to , move out of the integral.
Step 2.3.4
By the Power Rule, the integral of with respect to is .
Step 2.3.5
Simplify.
Step 2.3.5.1
Simplify.
Step 2.3.5.2
Simplify.
Step 2.3.5.2.1
Combine and .
Step 2.3.5.2.2
Cancel the common factor of .
Step 2.3.5.2.2.1
Cancel the common factor.
Step 2.3.5.2.2.2
Rewrite the expression.
Step 2.3.5.2.3
Multiply by .
Step 2.3.6
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Divide each term in by and simplify.
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Cancel the common factor.
Step 3.1.2.2
Divide by .
Step 3.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.3
Simplify the exponent.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify .
Step 3.3.1.1.1
Multiply the exponents in .
Step 3.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.3.1.1.1.2
Cancel the common factor of .
Step 3.3.1.1.1.2.1
Cancel the common factor.
Step 3.3.1.1.1.2.2
Rewrite the expression.
Step 3.3.1.1.2
Simplify.
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Rewrite as .
Step 3.3.2.1.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 3.3.2.1.3
Simplify terms.
Step 3.3.2.1.3.1
Simplify each term.
Step 3.3.2.1.3.1.1
Combine.
Step 3.3.2.1.3.1.2
Multiply by by adding the exponents.
Step 3.3.2.1.3.1.2.1
Use the power rule to combine exponents.
Step 3.3.2.1.3.1.2.2
Add and .
Step 3.3.2.1.3.1.3
Multiply by .
Step 3.3.2.1.3.1.4
Combine.
Step 3.3.2.1.3.1.5
Multiply by by adding the exponents.
Step 3.3.2.1.3.1.5.1
Multiply by .
Step 3.3.2.1.3.1.5.1.1
Raise to the power of .
Step 3.3.2.1.3.1.5.1.2
Use the power rule to combine exponents.
Step 3.3.2.1.3.1.5.2
Add and .
Step 3.3.2.1.3.1.6
Multiply by .
Step 3.3.2.1.3.1.7
Combine.
Step 3.3.2.1.3.1.8
Multiply by .
Step 3.3.2.1.3.1.9
Combine.
Step 3.3.2.1.3.1.10
Multiply by by adding the exponents.
Step 3.3.2.1.3.1.10.1
Multiply by .
Step 3.3.2.1.3.1.10.1.1
Raise to the power of .
Step 3.3.2.1.3.1.10.1.2
Use the power rule to combine exponents.
Step 3.3.2.1.3.1.10.2
Add and .
Step 3.3.2.1.3.1.11
Multiply by .
Step 3.3.2.1.3.1.12
Multiply .
Step 3.3.2.1.3.1.12.1
Multiply by .
Step 3.3.2.1.3.1.12.2
Raise to the power of .
Step 3.3.2.1.3.1.12.3
Raise to the power of .
Step 3.3.2.1.3.1.12.4
Use the power rule to combine exponents.
Step 3.3.2.1.3.1.12.5
Add and .
Step 3.3.2.1.3.1.12.6
Multiply by .
Step 3.3.2.1.3.1.13
Multiply .
Step 3.3.2.1.3.1.13.1
Multiply by .
Step 3.3.2.1.3.1.13.2
Multiply by .
Step 3.3.2.1.3.1.14
Combine.
Step 3.3.2.1.3.1.15
Multiply by .
Step 3.3.2.1.3.1.16
Multiply .
Step 3.3.2.1.3.1.16.1
Multiply by .
Step 3.3.2.1.3.1.16.2
Multiply by .
Step 3.3.2.1.3.1.17
Multiply .
Step 3.3.2.1.3.1.17.1
Multiply by .
Step 3.3.2.1.3.1.17.2
Raise to the power of .
Step 3.3.2.1.3.1.17.3
Raise to the power of .
Step 3.3.2.1.3.1.17.4
Use the power rule to combine exponents.
Step 3.3.2.1.3.1.17.5
Add and .
Step 3.3.2.1.3.1.17.6
Multiply by .
Step 3.3.2.1.3.2
Simplify terms.
Step 3.3.2.1.3.2.1
Combine the numerators over the common denominator.
Step 3.3.2.1.3.2.2
Add and .
Step 3.3.2.1.4
Add and .
Step 3.3.2.1.4.1
Reorder and .
Step 3.3.2.1.4.2
Add and .
Step 3.3.2.1.5
Add and .
Step 3.3.2.1.5.1
Reorder and .
Step 3.3.2.1.5.2
Add and .
Step 3.3.2.1.6
Split the fraction into two fractions.
Step 3.3.2.1.7
Factor out of .
Step 3.3.2.1.7.1
Factor out of .
Step 3.3.2.1.7.2
Factor out of .
Step 3.3.2.1.7.3
Factor out of .
Step 3.3.2.1.7.4
Factor out of .
Step 3.3.2.1.7.5
Factor out of .
Step 3.3.2.1.7.6
Factor out of .
Step 3.3.2.1.7.7
Factor out of .
Step 3.3.2.1.7.8
Factor out of .
Step 3.3.2.1.7.9
Factor out of .
Step 3.4
Simplify .
Step 3.4.1
Move .
Step 3.4.2
Move .
Step 3.4.3
Move .
Step 4
Simplify the constant of integration.
Step 5
Use the initial condition to find the value of by substituting for and for in .
Step 6
Step 6.1
Rewrite the equation as .
Step 6.2
Simplify .
Step 6.2.1
Add and .
Step 6.2.2
Add and .
Step 6.2.2.1
Reorder and .
Step 6.2.2.2
Add and .
Step 6.2.3
Simplify each term.
Step 6.2.3.1
Cancel the common factor of and .
Step 6.2.3.1.1
Factor out of .
Step 6.2.3.1.2
Cancel the common factors.
Step 6.2.3.1.2.1
Factor out of .
Step 6.2.3.1.2.2
Cancel the common factor.
Step 6.2.3.1.2.3
Rewrite the expression.
Step 6.2.3.1.2.4
Divide by .
Step 6.2.3.2
Simplify each term.
Step 6.2.3.2.1
Raising to any positive power yields .
Step 6.2.3.2.2
Raising to any positive power yields .
Step 6.2.3.2.3
Multiply by .
Step 6.2.3.3
Combine the opposite terms in .
Step 6.2.3.3.1
Add and .
Step 6.2.3.3.2
Add and .
Step 6.2.3.4
Multiply by .
Step 6.2.4
Add and .
Step 7
Step 7.1
Substitute for .
Step 7.2
Add and .
Step 7.3
To write as a fraction with a common denominator, multiply by .
Step 7.4
Combine and .
Step 7.5
Combine the numerators over the common denominator.
Step 7.6
Simplify the numerator.
Step 7.6.1
Apply the distributive property.
Step 7.6.2
Simplify.
Step 7.6.2.1
Multiply by by adding the exponents.
Step 7.6.2.1.1
Multiply by .
Step 7.6.2.1.1.1
Raise to the power of .
Step 7.6.2.1.1.2
Use the power rule to combine exponents.
Step 7.6.2.1.2
Add and .
Step 7.6.2.2
Rewrite using the commutative property of multiplication.
Step 7.6.2.3
Rewrite using the commutative property of multiplication.
Step 7.6.3
Simplify each term.
Step 7.6.3.1
Multiply by by adding the exponents.
Step 7.6.3.1.1
Move .
Step 7.6.3.1.2
Multiply by .
Step 7.6.3.1.2.1
Raise to the power of .
Step 7.6.3.1.2.2
Use the power rule to combine exponents.
Step 7.6.3.1.3
Add and .
Step 7.6.3.2
Multiply by by adding the exponents.
Step 7.6.3.2.1
Move .
Step 7.6.3.2.2
Multiply by .
Step 7.6.4
Move to the left of .