Calculus Examples

Solve the Differential Equation (dy)/(dx)=(y( natural log of y- natural log of x))/x
Step 1
Rewrite the differential equation as a function of .
Tap for more steps...
Step 1.1
Use the quotient property of logarithms, .
Step 1.2
Factor out from .
Tap for more steps...
Step 1.2.1
Factor out of .
Step 1.2.2
Reorder and .
Step 2
Let . Substitute for .
Step 3
Solve for .
Step 4
Use the product rule to find the derivative of with respect to .
Step 5
Substitute for .
Step 6
Solve the substituted differential equation.
Tap for more steps...
Step 6.1
Separate the variables.
Tap for more steps...
Step 6.1.1
Solve for .
Tap for more steps...
Step 6.1.1.1
Reorder factors in .
Step 6.1.1.2
Subtract from both sides of the equation.
Step 6.1.1.3
Divide each term in by and simplify.
Tap for more steps...
Step 6.1.1.3.1
Divide each term in by .
Step 6.1.1.3.2
Simplify the left side.
Tap for more steps...
Step 6.1.1.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.1.1.3.2.1.1
Cancel the common factor.
Step 6.1.1.3.2.1.2
Divide by .
Step 6.1.1.3.3
Simplify the right side.
Tap for more steps...
Step 6.1.1.3.3.1
Move the negative in front of the fraction.
Step 6.1.2
Factor.
Tap for more steps...
Step 6.1.2.1
Combine the numerators over the common denominator.
Step 6.1.2.2
Factor out of .
Tap for more steps...
Step 6.1.2.2.1
Factor out of .
Step 6.1.2.2.2
Factor out of .
Step 6.1.2.2.3
Factor out of .
Step 6.1.3
Multiply both sides by .
Step 6.1.4
Cancel the common factor of .
Tap for more steps...
Step 6.1.4.1
Cancel the common factor.
Step 6.1.4.2
Rewrite the expression.
Step 6.1.5
Rewrite the equation.
Step 6.2
Integrate both sides.
Tap for more steps...
Step 6.2.1
Set up an integral on each side.
Step 6.2.2
Integrate the left side.
Tap for more steps...
Step 6.2.2.1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 6.2.2.1.1
Let . Find .
Tap for more steps...
Step 6.2.2.1.1.1
Differentiate .
Step 6.2.2.1.1.2
The derivative of with respect to is .
Step 6.2.2.1.2
Rewrite the problem using and .
Step 6.2.2.2
Let . Then . Rewrite using and .
Tap for more steps...
Step 6.2.2.2.1
Let . Find .
Tap for more steps...
Step 6.2.2.2.1.1
Differentiate .
Step 6.2.2.2.1.2
By the Sum Rule, the derivative of with respect to is .
Step 6.2.2.2.1.3
Differentiate using the Power Rule which states that is where .
Step 6.2.2.2.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 6.2.2.2.1.5
Add and .
Step 6.2.2.2.2
Rewrite the problem using and .
Step 6.2.2.3
The integral of with respect to is .
Step 6.2.2.4
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 6.2.2.4.1
Replace all occurrences of with .
Step 6.2.2.4.2
Replace all occurrences of with .
Step 6.2.3
The integral of with respect to is .
Step 6.2.4
Group the constant of integration on the right side as .
Step 6.3
Solve for .
Tap for more steps...
Step 6.3.1
Move all the terms containing a logarithm to the left side of the equation.
Step 6.3.2
Use the quotient property of logarithms, .
Step 6.3.3
To solve for , rewrite the equation using properties of logarithms.
Step 6.3.4
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 6.3.5
Solve for .
Tap for more steps...
Step 6.3.5.1
Rewrite the equation as .
Step 6.3.5.2
Multiply both sides by .
Step 6.3.5.3
Simplify the left side.
Tap for more steps...
Step 6.3.5.3.1
Cancel the common factor of .
Tap for more steps...
Step 6.3.5.3.1.1
Cancel the common factor.
Step 6.3.5.3.1.2
Rewrite the expression.
Step 6.3.5.4
Solve for .
Tap for more steps...
Step 6.3.5.4.1
Reorder factors in .
Step 6.3.5.4.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 6.3.5.4.3
Add to both sides of the equation.
Step 6.3.5.4.4
To solve for , rewrite the equation using properties of logarithms.
Step 6.3.5.4.5
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 6.3.5.4.6
Solve for .
Tap for more steps...
Step 6.3.5.4.6.1
Rewrite the equation as .
Step 6.3.5.4.6.2
Reorder factors in .
Step 6.4
Group the constant terms together.
Tap for more steps...
Step 6.4.1
Simplify the constant of integration.
Step 6.4.2
Combine constants with the plus or minus.
Step 7
Substitute for .
Step 8
Solve for .
Tap for more steps...
Step 8.1
Multiply both sides by .
Step 8.2
Simplify.
Tap for more steps...
Step 8.2.1
Simplify the left side.
Tap for more steps...
Step 8.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 8.2.1.1.1
Cancel the common factor.
Step 8.2.1.1.2
Rewrite the expression.
Step 8.2.2
Simplify the right side.
Tap for more steps...
Step 8.2.2.1
Reorder factors in .