Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.3
Evaluate .
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.5
Simplify.
Step 1.5.1
Add and .
Step 1.5.2
Reorder terms.
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
By the Sum Rule, the derivative of with respect to is .
Step 2.4
Differentiate using the Power Rule which states that is where .
Step 2.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.6
Differentiate using the Power Rule which states that is where .
Step 2.7
Multiply by .
Step 2.8
Since is constant with respect to , the derivative of with respect to is .
Step 2.9
Add and .
Step 2.10
Simplify.
Step 2.10.1
Apply the distributive property.
Step 2.10.2
Combine terms.
Step 2.10.2.1
Multiply by .
Step 2.10.2.2
Multiply by .
Step 3
Step 3.1
Substitute for and for .
Step 3.2
Since the two sides have been shown to be equivalent, the equation is an identity.
is an identity.
is an identity.
Step 4
Set equal to the integral of .
Step 5
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
Split the single integral into multiple integrals.
Step 5.3
Apply the constant rule.
Step 5.4
Since is constant with respect to , move out of the integral.
Step 5.5
By the Power Rule, the integral of with respect to is .
Step 5.6
Apply the constant rule.
Step 5.7
Combine and .
Step 5.8
Simplify.
Step 6
Since the integral of will contain an integration constant, we can replace with .
Step 7
Set .
Step 8
Step 8.1
Differentiate with respect to .
Step 8.2
By the Sum Rule, the derivative of with respect to is .
Step 8.3
Evaluate .
Step 8.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.2
By the Sum Rule, the derivative of with respect to is .
Step 8.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.4
Differentiate using the Power Rule which states that is where .
Step 8.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.6
Differentiate using the Power Rule which states that is where .
Step 8.3.7
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.8
Move to the left of .
Step 8.3.9
Multiply by .
Step 8.3.10
Add and .
Step 8.4
Differentiate using the function rule which states that the derivative of is .
Step 8.5
Simplify.
Step 8.5.1
Apply the distributive property.
Step 8.5.2
Combine terms.
Step 8.5.2.1
Multiply by .
Step 8.5.2.2
Multiply by .
Step 8.5.2.3
Multiply by .
Step 8.5.3
Reorder terms.
Step 9
Step 9.1
Move all terms not containing to the right side of the equation.
Step 9.1.1
Subtract from both sides of the equation.
Step 9.1.2
Add to both sides of the equation.
Step 9.1.3
Combine the opposite terms in .
Step 9.1.3.1
Subtract from .
Step 9.1.3.2
Add and .
Step 9.1.3.3
Add and .
Step 9.1.3.4
Add and .
Step 10
Step 10.1
Integrate both sides of .
Step 10.2
Evaluate .
Step 10.3
Apply the constant rule.
Step 11
Substitute for in .
Step 12
Step 12.1
Apply the distributive property.
Step 12.2
Simplify.
Step 12.2.1
Multiply .
Step 12.2.1.1
Multiply by .
Step 12.2.1.2
Multiply by .
Step 12.2.2
Multiply by .