Calculus Examples

Solve the Differential Equation (y^2-2xy+6)dx-(x^2-2xy+2)dy=0
Step 1
Find where .
Tap for more steps...
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Add and .
Step 1.5.2
Reorder terms.
Step 2
Find where .
Tap for more steps...
Step 2.1
Differentiate with respect to .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
By the Sum Rule, the derivative of with respect to is .
Step 2.4
Differentiate using the Power Rule which states that is where .
Step 2.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.6
Differentiate using the Power Rule which states that is where .
Step 2.7
Multiply by .
Step 2.8
Since is constant with respect to , the derivative of with respect to is .
Step 2.9
Add and .
Step 2.10
Simplify.
Tap for more steps...
Step 2.10.1
Apply the distributive property.
Step 2.10.2
Combine terms.
Tap for more steps...
Step 2.10.2.1
Multiply by .
Step 2.10.2.2
Multiply by .
Step 3
Check that .
Tap for more steps...
Step 3.1
Substitute for and for .
Step 3.2
Since the two sides have been shown to be equivalent, the equation is an identity.
is an identity.
is an identity.
Step 4
Set equal to the integral of .
Step 5
Integrate to find .
Tap for more steps...
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
Split the single integral into multiple integrals.
Step 5.3
Apply the constant rule.
Step 5.4
Since is constant with respect to , move out of the integral.
Step 5.5
By the Power Rule, the integral of with respect to is .
Step 5.6
Apply the constant rule.
Step 5.7
Combine and .
Step 5.8
Simplify.
Step 6
Since the integral of will contain an integration constant, we can replace with .
Step 7
Set .
Step 8
Find .
Tap for more steps...
Step 8.1
Differentiate with respect to .
Step 8.2
By the Sum Rule, the derivative of with respect to is .
Step 8.3
Evaluate .
Tap for more steps...
Step 8.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.2
By the Sum Rule, the derivative of with respect to is .
Step 8.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.4
Differentiate using the Power Rule which states that is where .
Step 8.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.6
Differentiate using the Power Rule which states that is where .
Step 8.3.7
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.8
Move to the left of .
Step 8.3.9
Multiply by .
Step 8.3.10
Add and .
Step 8.4
Differentiate using the function rule which states that the derivative of is .
Step 8.5
Simplify.
Tap for more steps...
Step 8.5.1
Apply the distributive property.
Step 8.5.2
Combine terms.
Tap for more steps...
Step 8.5.2.1
Multiply by .
Step 8.5.2.2
Multiply by .
Step 8.5.2.3
Multiply by .
Step 8.5.3
Reorder terms.
Step 9
Solve for .
Tap for more steps...
Step 9.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 9.1.1
Subtract from both sides of the equation.
Step 9.1.2
Add to both sides of the equation.
Step 9.1.3
Combine the opposite terms in .
Tap for more steps...
Step 9.1.3.1
Subtract from .
Step 9.1.3.2
Add and .
Step 9.1.3.3
Add and .
Step 9.1.3.4
Add and .
Step 10
Find the antiderivative of to find .
Tap for more steps...
Step 10.1
Integrate both sides of .
Step 10.2
Evaluate .
Step 10.3
Apply the constant rule.
Step 11
Substitute for in .
Step 12
Simplify each term.
Tap for more steps...
Step 12.1
Apply the distributive property.
Step 12.2
Simplify.
Tap for more steps...
Step 12.2.1
Multiply .
Tap for more steps...
Step 12.2.1.1
Multiply by .
Step 12.2.1.2
Multiply by .
Step 12.2.2
Multiply by .