Calculus Examples

Solve the Differential Equation (dy)/(dx)-2xy-6x=0
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.1.1
Add to both sides of the equation.
Step 1.1.2
Add to both sides of the equation.
Step 1.2
Factor out of .
Tap for more steps...
Step 1.2.1
Factor out of .
Step 1.2.2
Factor out of .
Step 1.2.3
Factor out of .
Step 1.3
Multiply both sides by .
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Rewrite using the commutative property of multiplication.
Step 1.4.2
Combine and .
Step 1.4.3
Cancel the common factor of .
Tap for more steps...
Step 1.4.3.1
Factor out of .
Step 1.4.3.2
Cancel the common factor.
Step 1.4.3.3
Rewrite the expression.
Step 1.5
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Let . Then . Rewrite using and .
Tap for more steps...
Step 2.2.1.1
Let . Find .
Tap for more steps...
Step 2.2.1.1.1
Differentiate .
Step 2.2.1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.2.1.1.3
Differentiate using the Power Rule which states that is where .
Step 2.2.1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.1.1.5
Add and .
Step 2.2.1.2
Rewrite the problem using and .
Step 2.2.2
The integral of with respect to is .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
By the Power Rule, the integral of with respect to is .
Step 2.3.3
Simplify the answer.
Tap for more steps...
Step 2.3.3.1
Rewrite as .
Step 2.3.3.2
Simplify.
Tap for more steps...
Step 2.3.3.2.1
Combine and .
Step 2.3.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 2.3.3.2.2.1
Cancel the common factor.
Step 2.3.3.2.2.2
Rewrite the expression.
Step 2.3.3.2.3
Multiply by .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
To solve for , rewrite the equation using properties of logarithms.
Step 3.2
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3.3
Solve for .
Tap for more steps...
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 3.3.3
Subtract from both sides of the equation.
Step 4
Group the constant terms together.
Tap for more steps...
Step 4.1
Rewrite as .
Step 4.2
Reorder and .
Step 4.3
Combine constants with the plus or minus.