Calculus Examples

Solve the Differential Equation (dx)/(dy)(6x-2xy)=1
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Divide each term in by and simplify.
Tap for more steps...
Step 1.1.1
Divide each term in by .
Step 1.1.2
Simplify the left side.
Tap for more steps...
Step 1.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.1.2.1.1
Cancel the common factor.
Step 1.1.2.1.2
Divide by .
Step 1.1.3
Simplify the right side.
Tap for more steps...
Step 1.1.3.1
Simplify the denominator.
Tap for more steps...
Step 1.1.3.1.1
Factor out of .
Tap for more steps...
Step 1.1.3.1.1.1
Factor out of .
Step 1.1.3.1.1.2
Factor out of .
Step 1.1.3.1.1.3
Factor out of .
Step 1.1.3.1.2
Rewrite as .
Step 1.2
Regroup factors.
Step 1.3
Multiply both sides by .
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Multiply by .
Step 1.4.2
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.1
Cancel the common factor.
Step 1.4.2.2
Rewrite the expression.
Step 1.5
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Since is constant with respect to , move out of the integral.
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.2.3
Simplify the answer.
Tap for more steps...
Step 2.2.3.1
Rewrite as .
Step 2.2.3.2
Simplify.
Tap for more steps...
Step 2.2.3.2.1
Combine and .
Step 2.2.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.3.2.2.1
Cancel the common factor.
Step 2.2.3.2.2.2
Rewrite the expression.
Step 2.2.3.2.3
Multiply by .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.3.1.1
Let . Find .
Tap for more steps...
Step 2.3.1.1.1
Rewrite.
Step 2.3.1.1.2
Divide by .
Step 2.3.1.2
Rewrite the problem using and .
Step 2.3.2
Split the fraction into multiple fractions.
Step 2.3.3
Since is constant with respect to , move out of the integral.
Step 2.3.4
The integral of with respect to is .
Step 2.3.5
Simplify.
Step 2.3.6
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.2
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.2.1
First, use the positive value of the to find the first solution.
Step 3.2.2
Next, use the negative value of the to find the second solution.
Step 3.2.3
The complete solution is the result of both the positive and negative portions of the solution.