Calculus Examples

Solve the Differential Equation (d^2y)/(dx^2)-3(dy)/(dx)+2y=4x^2
Step 1
Assume all solutions are of the form .
Step 2
Find the characteristic equation for .
Tap for more steps...
Step 2.1
Find the first derivative.
Step 2.2
Find the second derivative.
Step 2.3
Substitute into the differential equation.
Step 2.4
Remove parentheses.
Step 2.5
Factor out .
Tap for more steps...
Step 2.5.1
Factor out of .
Step 2.5.2
Factor out of .
Step 2.5.3
Factor out of .
Step 2.5.4
Factor out of .
Step 2.5.5
Factor out of .
Step 2.6
Since exponentials can never be zero, divide both sides by .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Use the quadratic formula to find the solutions.
Step 3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Simplify the numerator.
Tap for more steps...
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Multiply by .
Step 3.4.1.3
Apply the distributive property.
Step 3.4.1.4
Multiply by .
Step 3.4.1.5
Multiply by .
Step 3.4.1.6
Subtract from .
Step 3.4.2
Multiply by .
Step 3.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.5.1
Simplify the numerator.
Tap for more steps...
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply by .
Step 3.5.1.3
Apply the distributive property.
Step 3.5.1.4
Multiply by .
Step 3.5.1.5
Multiply by .
Step 3.5.1.6
Subtract from .
Step 3.5.2
Multiply by .
Step 3.5.3
Change the to .
Step 3.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.6.1
Simplify the numerator.
Tap for more steps...
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply by .
Step 3.6.1.3
Apply the distributive property.
Step 3.6.1.4
Multiply by .
Step 3.6.1.5
Multiply by .
Step 3.6.1.6
Subtract from .
Step 3.6.2
Multiply by .
Step 3.6.3
Change the to .
Step 3.7
The final answer is the combination of both solutions.
Step 4
With the two found values of , two solutions can be constructed.
Step 5
By the principle of superposition, the general solution is a linear combination of the two solutions for a second order homogeneous linear differential equation.
Step 6
Simplify each term.
Tap for more steps...
Step 6.1
Combine and .
Step 6.2
Combine and .