Enter a problem...
Calculus Examples
Step 1
Assume all solutions are of the form .
Step 2
Step 2.1
Find the first derivative.
Step 2.2
Find the second derivative.
Step 2.3
Substitute into the differential equation.
Step 2.4
Remove parentheses.
Step 2.5
Factor out .
Step 2.5.1
Factor out of .
Step 2.5.2
Factor out of .
Step 2.5.3
Factor out of .
Step 2.5.4
Factor out of .
Step 2.5.5
Factor out of .
Step 2.6
Since exponentials can never be zero, divide both sides by .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Use the quadratic formula to find the solutions.
Step 3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4
Simplify.
Step 3.4.1
Simplify the numerator.
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Multiply by .
Step 3.4.1.3
Apply the distributive property.
Step 3.4.1.4
Multiply by .
Step 3.4.1.5
Multiply by .
Step 3.4.1.6
Subtract from .
Step 3.4.2
Multiply by .
Step 3.5
Simplify the expression to solve for the portion of the .
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply by .
Step 3.5.1.3
Apply the distributive property.
Step 3.5.1.4
Multiply by .
Step 3.5.1.5
Multiply by .
Step 3.5.1.6
Subtract from .
Step 3.5.2
Multiply by .
Step 3.5.3
Change the to .
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply by .
Step 3.6.1.3
Apply the distributive property.
Step 3.6.1.4
Multiply by .
Step 3.6.1.5
Multiply by .
Step 3.6.1.6
Subtract from .
Step 3.6.2
Multiply by .
Step 3.6.3
Change the to .
Step 3.7
The final answer is the combination of both solutions.
Step 4
With the two found values of , two solutions can be constructed.
Step 5
By the principle of superposition, the general solution is a linear combination of the two solutions for a second order homogeneous linear differential equation.
Step 6
Step 6.1
Combine and .
Step 6.2
Combine and .