Enter a problem...
Calculus Examples
dydx=ycos(x)1+y2dydx=ycos(x)1+y2 , y(0)=1y(0)=1
Step 1
Step 1.1
Regroup factors.
dydx=y1+y2cos(x)dydx=y1+y2cos(x)
Step 1.2
Multiply both sides by 1+y2y1+y2y.
1+y2ydydx=1+y2y(y1+y2cos(x))1+y2ydydx=1+y2y(y1+y2cos(x))
Step 1.3
Simplify.
Step 1.3.1
Combine y1+y2y1+y2 and cos(x)cos(x).
1+y2ydydx=1+y2y⋅ycos(x)1+y21+y2ydydx=1+y2y⋅ycos(x)1+y2
Step 1.3.2
Cancel the common factor of 1+y21+y2.
Step 1.3.2.1
Cancel the common factor.
1+y2ydydx=1+y2y⋅ycos(x)1+y2
Step 1.3.2.2
Rewrite the expression.
1+y2ydydx=1y(ycos(x))
1+y2ydydx=1y(ycos(x))
Step 1.3.3
Cancel the common factor of y.
Step 1.3.3.1
Factor y out of ycos(x).
1+y2ydydx=1y(y(cos(x)))
Step 1.3.3.2
Cancel the common factor.
1+y2ydydx=1y(ycos(x))
Step 1.3.3.3
Rewrite the expression.
1+y2ydydx=cos(x)
1+y2ydydx=cos(x)
1+y2ydydx=cos(x)
Step 1.4
Rewrite the equation.
1+y2ydy=cos(x)dx
1+y2ydy=cos(x)dx
Step 2
Step 2.1
Set up an integral on each side.
∫1+y2ydy=∫cos(x)dx
Step 2.2
Integrate the left side.
Step 2.2.1
Split the fraction into multiple fractions.
∫1y+y2ydy=∫cos(x)dx
Step 2.2.2
Split the single integral into multiple integrals.
∫1ydy+∫y2ydy=∫cos(x)dx
Step 2.2.3
Cancel the common factor of y2 and y.
Step 2.2.3.1
Factor y out of y2.
∫1ydy+∫y⋅yydy=∫cos(x)dx
Step 2.2.3.2
Cancel the common factors.
Step 2.2.3.2.1
Raise y to the power of 1.
∫1ydy+∫y⋅yy1dy=∫cos(x)dx
Step 2.2.3.2.2
Factor y out of y1.
∫1ydy+∫y⋅yy⋅1dy=∫cos(x)dx
Step 2.2.3.2.3
Cancel the common factor.
∫1ydy+∫y⋅yy⋅1dy=∫cos(x)dx
Step 2.2.3.2.4
Rewrite the expression.
∫1ydy+∫y1dy=∫cos(x)dx
Step 2.2.3.2.5
Divide y by 1.
∫1ydy+∫ydy=∫cos(x)dx
∫1ydy+∫ydy=∫cos(x)dx
∫1ydy+∫ydy=∫cos(x)dx
Step 2.2.4
The integral of 1y with respect to y is ln(|y|).
ln(|y|)+C1+∫ydy=∫cos(x)dx
Step 2.2.5
By the Power Rule, the integral of y with respect to y is 12y2.
ln(|y|)+C1+12y2+C2=∫cos(x)dx
Step 2.2.6
Simplify.
ln(|y|)+12y2+C3=∫cos(x)dx
Step 2.2.7
Reorder terms.
12y2+ln(|y|)+C3=∫cos(x)dx
12y2+ln(|y|)+C3=∫cos(x)dx
Step 2.3
The integral of cos(x) with respect to x is sin(x).
12y2+ln(|y|)+C3=sin(x)+C4
Step 2.4
Group the constant of integration on the right side as C.
12y2+ln(|y|)=sin(x)+C
12y2+ln(|y|)=sin(x)+C
Step 3
Use the initial condition to find the value of C by substituting 0 for x and 1 for y in 12y2+ln(|y|)=sin(x)+C.
12⋅12+ln(|1|)=sin(0)+C
Step 4
Step 4.1
Rewrite the equation as sin(0)+C=12⋅12+ln(|1|).
sin(0)+C=12⋅12+ln(|1|)
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify sin(0)+C.
Step 4.2.1.1
The exact value of sin(0) is 0.
0+C=12⋅12+ln(|1|)
Step 4.2.1.2
Add 0 and C.
C=12⋅12+ln(|1|)
C=12⋅12+ln(|1|)
C=12⋅12+ln(|1|)
Step 4.3
Simplify the right side.
Step 4.3.1
Simplify 12⋅12+ln(|1|).
Step 4.3.1.1
Simplify each term.
Step 4.3.1.1.1
One to any power is one.
C=12⋅1+ln(|1|)
Step 4.3.1.1.2
Multiply 12 by 1.
C=12+ln(|1|)
Step 4.3.1.1.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
C=12+ln(1)
Step 4.3.1.1.4
The natural logarithm of 1 is 0.
C=12+0
C=12+0
Step 4.3.1.2
Add 12 and 0.
C=12
C=12
C=12
C=12
Step 5
Step 5.1
Substitute 12 for C.
12y2+ln(|y|)=sin(x)+12
Step 5.2
Combine 12 and y2.
y22+ln(|y|)=sin(x)+12
y22+ln(|y|)=sin(x)+12