Enter a problem...
Calculus Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
By the Power Rule, the integral of with respect to is .
Step 2.3.3
Simplify the answer.
Step 2.3.3.1
Rewrite as .
Step 2.3.3.2
Simplify.
Step 2.3.3.2.1
Combine and .
Step 2.3.3.2.2
Cancel the common factor of and .
Step 2.3.3.2.2.1
Factor out of .
Step 2.3.3.2.2.2
Cancel the common factors.
Step 2.3.3.2.2.2.1
Factor out of .
Step 2.3.3.2.2.2.2
Cancel the common factor.
Step 2.3.3.2.2.2.3
Rewrite the expression.
Step 2.3.3.2.2.2.4
Divide by .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Divide each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of .
Step 3.2.1.1
Cancel the common factor.
Step 3.2.1.2
Divide by .
Step 3.3
Simplify the right side.
Step 3.3.1
Move the negative in front of the fraction.
Step 4
Simplify the constant of integration.