Enter a problem...
Calculus Examples
dxdy=ex-y
Step 1
Let v=ex-y. Substitute v for all occurrences of ex-y.
dxdy=v
Step 2
Step 2.1
Differentiate using the chain rule, which states that ddy[f(g(y))] is f′(g(y))g′(y) where f(y)=ey and g(y)=x-y.
Step 2.1.1
To apply the Chain Rule, set u1 as x-y.
dvdy=ddu1[eu1]ddy[x-y]
Step 2.1.2
Differentiate using the Exponential Rule which states that ddu1[au1] is au1ln(a) where a=e.
dvdy=eu1ddy[x-y]
Step 2.1.3
Replace all occurrences of u1 with x-y.
dvdy=ex-yddy[x-y]
dvdy=ex-yddy[x-y]
Step 2.2
By the Sum Rule, the derivative of x-y with respect to y is ddy[x]+ddy[-y].
dvdy=ex-y(ddy[x]+ddy[-y])
Step 2.3
Rewrite ddy[x] as x′.
dvdy=ex-y(x′+ddy[-y])
Step 2.4
Since -1 is constant with respect to y, the derivative of -y with respect to y is -ddy[y].
dvdy=ex-y(x′-ddy[y])
Step 2.5
Differentiate using the Power Rule which states that ddy[yn] is nyn-1 where n=1.
dvdy=ex-y(x′-1⋅1)
Step 2.6
Multiply -1 by 1.
dvdy=ex-y(x′-1)
dvdy=ex-y(x′-1)
Step 3
Substitute v for ex-y.
dvdy=v(x′-1)
Step 4
Substitute the derivative back in to the differential equation.
dvdyv+1=v
Step 5
Step 5.1
Solve for dvdy.
Step 5.1.1
Subtract 1 from both sides of the equation.
dvdyv=v-1
Step 5.1.2
Multiply both sides by v.
dvdyvv=(v-1)v
Step 5.1.3
Simplify.
Step 5.1.3.1
Simplify the left side.
Step 5.1.3.1.1
Cancel the common factor of v.
Step 5.1.3.1.1.1
Cancel the common factor.
dvdyvv=(v-1)v
Step 5.1.3.1.1.2
Rewrite the expression.
dvdy=(v-1)v
dvdy=(v-1)v
dvdy=(v-1)v
Step 5.1.3.2
Simplify the right side.
Step 5.1.3.2.1
Simplify (v-1)v.
Step 5.1.3.2.1.1
Apply the distributive property.
dvdy=v⋅v-1v
Step 5.1.3.2.1.2
Simplify the expression.
Step 5.1.3.2.1.2.1
Multiply v by v.
dvdy=v2-1v
Step 5.1.3.2.1.2.2
Rewrite -1v as -v.
dvdy=v2-v
dvdy=v2-v
dvdy=v2-v
dvdy=v2-v
dvdy=v2-v
dvdy=v2-v
Step 5.2
Multiply both sides by 1v2-v.
1v2-vdvdy=1v2-v(v2-v)
Step 5.3
Cancel the common factor of v2-v.
Step 5.3.1
Cancel the common factor.
1v2-vdvdy=1v2-v(v2-v)
Step 5.3.2
Rewrite the expression.
1v2-vdvdy=1
1v2-vdvdy=1
Step 5.4
Rewrite the equation.
1v2-vdv=1dy
1v2-vdv=1dy
Step 6
Step 6.1
Set up an integral on each side.
∫1v2-vdv=∫dy
Step 6.2
Integrate the left side.
Step 6.2.1
Write the fraction using partial fraction decomposition.
Step 6.2.1.1
Decompose the fraction and multiply through by the common denominator.
Step 6.2.1.1.1
Factor v out of v2-v.
Step 6.2.1.1.1.1
Factor v out of v2.
1v⋅v-v
Step 6.2.1.1.1.2
Factor v out of -v.
1v⋅v+v⋅-1
Step 6.2.1.1.1.3
Factor v out of v⋅v+v⋅-1.
1v(v-1)
1v(v-1)
Step 6.2.1.1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place B.
Av+Bv-1
Step 6.2.1.1.3
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is v(v-1).
1(v(v-1))v(v-1)=A(v(v-1))v+B(v(v-1))v-1
Step 6.2.1.1.4
Cancel the common factor of v.
Step 6.2.1.1.4.1
Cancel the common factor.
1(v(v-1))v(v-1)=A(v(v-1))v+B(v(v-1))v-1
Step 6.2.1.1.4.2
Rewrite the expression.
1(v-1)v-1=A(v(v-1))v+B(v(v-1))v-1
1(v-1)v-1=A(v(v-1))v+B(v(v-1))v-1
Step 6.2.1.1.5
Cancel the common factor of v-1.
Step 6.2.1.1.5.1
Cancel the common factor.
1(v-1)v-1=A(v(v-1))v+B(v(v-1))v-1
Step 6.2.1.1.5.2
Rewrite the expression.
1=A(v(v-1))v+B(v(v-1))v-1
1=A(v(v-1))v+B(v(v-1))v-1
Step 6.2.1.1.6
Simplify each term.
Step 6.2.1.1.6.1
Cancel the common factor of v.
Step 6.2.1.1.6.1.1
Cancel the common factor.
1=A(v(v-1))v+B(v(v-1))v-1
Step 6.2.1.1.6.1.2
Divide A(v-1) by 1.
1=A(v-1)+B(v(v-1))v-1
1=A(v-1)+B(v(v-1))v-1
Step 6.2.1.1.6.2
Apply the distributive property.
1=A(v)+A⋅-1+B(v(v-1))v-1
Step 6.2.1.1.6.3
Move -1 to the left of A.
1=A(v)-1⋅A+B(v(v-1))v-1
Step 6.2.1.1.6.4
Rewrite -1A as -A.
1=A(v)-A+B(v(v-1))v-1
Step 6.2.1.1.6.5
Cancel the common factor of v-1.
Step 6.2.1.1.6.5.1
Cancel the common factor.
1=A(v)-A+B(v(v-1))v-1
Step 6.2.1.1.6.5.2
Divide Bv by 1.
1=Av-A+Bv
1=Av-A+Bv
1=Av-A+Bv
Step 6.2.1.1.7
Move -A.
1=Av+Bv-A
1=Av+Bv-A
Step 6.2.1.2
Create equations for the partial fraction variables and use them to set up a system of equations.
Step 6.2.1.2.1
Create an equation for the partial fraction variables by equating the coefficients of v from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
0=A+B
Step 6.2.1.2.2
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing v. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
1=-1A
Step 6.2.1.2.3
Set up the system of equations to find the coefficients of the partial fractions.
0=A+B
1=-1A
0=A+B
1=-1A
Step 6.2.1.3
Solve the system of equations.
Step 6.2.1.3.1
Solve for A in 1=-1A.
Step 6.2.1.3.1.1
Rewrite the equation as -1A=1.
-1A=1
0=A+B
Step 6.2.1.3.1.2
Divide each term in -1A=1 by -1 and simplify.
Step 6.2.1.3.1.2.1
Divide each term in -1A=1 by -1.
-1A-1=1-1
0=A+B
Step 6.2.1.3.1.2.2
Simplify the left side.
Step 6.2.1.3.1.2.2.1
Dividing two negative values results in a positive value.
A1=1-1
0=A+B
Step 6.2.1.3.1.2.2.2
Divide A by 1.
A=1-1
0=A+B
A=1-1
0=A+B
Step 6.2.1.3.1.2.3
Simplify the right side.
Step 6.2.1.3.1.2.3.1
Divide 1 by -1.
A=-1
0=A+B
A=-1
0=A+B
A=-1
0=A+B
A=-1
0=A+B
Step 6.2.1.3.2
Replace all occurrences of A with -1 in each equation.
Step 6.2.1.3.2.1
Replace all occurrences of A in 0=A+B with -1.
0=(-1)+B
A=-1
Step 6.2.1.3.2.2
Simplify the right side.
Step 6.2.1.3.2.2.1
Remove parentheses.
0=-1+B
A=-1
0=-1+B
A=-1
0=-1+B
A=-1
Step 6.2.1.3.3
Solve for B in 0=-1+B.
Step 6.2.1.3.3.1
Rewrite the equation as -1+B=0.
-1+B=0
A=-1
Step 6.2.1.3.3.2
Add 1 to both sides of the equation.
B=1
A=-1
B=1
A=-1
Step 6.2.1.3.4
Solve the system of equations.
B=1A=-1
Step 6.2.1.3.5
List all of the solutions.
B=1,A=-1
B=1,A=-1
Step 6.2.1.4
Replace each of the partial fraction coefficients in Av+Bv-1 with the values found for A and B.
-1v+1v-1
Step 6.2.1.5
Move the negative in front of the fraction.
∫-1v+1v-1dv=∫dy
∫-1v+1v-1dv=∫dy
Step 6.2.2
Split the single integral into multiple integrals.
∫-1vdv+∫1v-1dv=∫dy
Step 6.2.3
Since -1 is constant with respect to v, move -1 out of the integral.
-∫1vdv+∫1v-1dv=∫dy
Step 6.2.4
The integral of 1v with respect to v is ln(|v|).
-(ln(|v|)+C1)+∫1v-1dv=∫dy
Step 6.2.5
Let u2=v-1. Then du2=dv. Rewrite using u2 and du2.
Step 6.2.5.1
Let u2=v-1. Find du2dv.
Step 6.2.5.1.1
Differentiate v-1.
ddv[v-1]
Step 6.2.5.1.2
By the Sum Rule, the derivative of v-1 with respect to v is ddv[v]+ddv[-1].
ddv[v]+ddv[-1]
Step 6.2.5.1.3
Differentiate using the Power Rule which states that ddv[vn] is nvn-1 where n=1.
1+ddv[-1]
Step 6.2.5.1.4
Since -1 is constant with respect to v, the derivative of -1 with respect to v is 0.
1+0
Step 6.2.5.1.5
Add 1 and 0.
1
1
Step 6.2.5.2
Rewrite the problem using u2 and du2.
-(ln(|v|)+C1)+∫1u2du2=∫dy
-(ln(|v|)+C1)+∫1u2du2=∫dy
Step 6.2.6
The integral of 1u2 with respect to u2 is ln(|u2|).
-(ln(|v|)+C1)+ln(|u2|)+C2=∫dy
Step 6.2.7
Simplify.
-ln(|v|)+ln(|u2|)+C3=∫dy
Step 6.2.8
Reorder terms.
ln(|u2|)-ln(|v|)+C3=∫dy
ln(|u2|)-ln(|v|)+C3=∫dy
Step 6.3
Apply the constant rule.
ln(|u2|)-ln(|v|)+C3=y+C4
Step 6.4
Group the constant of integration on the right side as C.
ln(|u2|)-ln(|v|)=y+C
ln(|u2|)-ln(|v|)=y+C
Step 7
Step 7.1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
ln(|u2||v|)=y+C
Step 7.2
Reorder y and C.
ln(|u2||v|)=C+y
Step 7.3
To solve for v, rewrite the equation using properties of logarithms.
eln(|u2||v|)=eC+y
Step 7.4
Rewrite ln(|u2||v|)=C+y in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
eC+y=|u2||v|
Step 7.5
Solve for v.
Step 7.5.1
Rewrite the equation as |u2||v|=eC+y.
|u2||v|=eC+y
Step 7.5.2
Multiply both sides by |v|.
|u2||v||v|=eC+y|v|
Step 7.5.3
Simplify the left side.
Step 7.5.3.1
Cancel the common factor of |v|.
Step 7.5.3.1.1
Cancel the common factor.
|u2||v||v|=eC+y|v|
Step 7.5.3.1.2
Rewrite the expression.
|u2|=eC+y|v|
|u2|=eC+y|v|
|u2|=eC+y|v|
Step 7.5.4
Solve for v.
Step 7.5.4.1
Rewrite the equation as eC+y|v|=|u2|.
eC+y|v|=|u2|
Step 7.5.4.2
Divide each term in eC+y|v|=|u2| by eC+y and simplify.
Step 7.5.4.2.1
Divide each term in eC+y|v|=|u2| by eC+y.
eC+y|v|eC+y=|u2|eC+y
Step 7.5.4.2.2
Simplify the left side.
Step 7.5.4.2.2.1
Cancel the common factor of eC+y.
Step 7.5.4.2.2.1.1
Cancel the common factor.
eC+y|v|eC+y=|u2|eC+y
Step 7.5.4.2.2.1.2
Divide |v| by 1.
|v|=|u2|eC+y
|v|=|u2|eC+y
|v|=|u2|eC+y
|v|=|u2|eC+y
Step 7.5.4.3
Remove the absolute value term. This creates a ± on the right side of the equation because |x|=±x.
v=±|u2|eC+y
v=±|u2|eC+y
v=±|u2|eC+y
v=±|u2|eC+y
Step 8
Step 8.1
Reorder terms.
v=±|u2|ey+C
Step 8.2
Rewrite ey+C as eyeC.
v=±|u2|eyeC
Step 8.3
Reorder ey and eC.
v=±|u2|eCey
v=±|u2|eCey
Step 9
Replace all occurrences of v with ex-y.
ex-y=±|u2|eCey
Step 10
Step 10.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex-y)=ln(±|u2|eCey)
Step 10.2
Expand the left side.
Step 10.2.1
Expand ln(ex-y) by moving x-y outside the logarithm.
(x-y)ln(e)=ln(±|u2|eCey)
Step 10.2.2
The natural logarithm of e is 1.
(x-y)⋅1=ln(±|u2|eCey)
Step 10.2.3
Multiply x-y by 1.
x-y=ln(±|u2|eCey)
x-y=ln(±|u2|eCey)
Step 10.3
Use the power rule aman=am+n to combine exponents.
x-y=ln(±|u2|eC+y)
Step 10.4
Add y to both sides of the equation.
x=ln(±|u2|eC+y)+y
x=ln(±|u2|eC+y)+y
Step 11
Step 11.1
Reorder terms.
x=ln(±|u2|ey+C)+y
Step 11.2
Rewrite ey+C as eyeC.
x=ln(±|u2|eyeC)+y
Step 11.3
Reorder ey and eC.
x=ln(±|u2|eCey)+y
x=ln(±|u2|eCey)+y